1 / 20

Prof. Swarat Chaudhuri

COMP 482: Design and Analysis of Algorithms. Prof. Swarat Chaudhuri. Spring 2013 Lecture 14. Q1: GCD. Give a divide-and-conquer algorithm for computing the GCD of two n-bit positive integers. Answer. GCD(a,b) = 2 GCD(a/2, b/2) if a,b are even

feivel
Download Presentation

Prof. Swarat Chaudhuri

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. COMP 482: Design and Analysis of Algorithms Prof. Swarat Chaudhuri Spring 2013 Lecture 14

  2. Q1: GCD • Give a divide-and-conquer algorithm for computing the GCD of two n-bit positive integers.

  3. Answer • GCD(a,b) = • 2 GCD(a/2, b/2) if a,b are even • GCD(a, b/2) if a is odd, b is even • GCD((a – b)/2, b) if a, b are odd

  4. Q2: Force calculations • You are working with some physicists who are studying the electrical forces that a set of particles exert on each other. • The particles are arranged on the real line at positions 1,…,n; the j-th particle has charge qj. The total net force on particle j, by Coulomb’s law of electricity, is equal to: • Give: • The brute-force algorithm to solve this problem; and • An O(n log n) time algorithm for the problem

  5. Answer: use convolution! • Consider two vectors: • a = (q1,q2,…qn) • b = (n-2, (n – 1)-2, …, ¼, 1, 0, -1, -1/4, …, - n-2) • Construct the convolution (a * b). The convolution has an entry as follows for each j:

  6. 6. Dynamic Programming

  7. Algorithmic Paradigms • Greed. Build up a solution incrementally, myopically optimizing some local criterion. • Divide-and-conquer. Break up a problem into two sub-problems, solve each sub-problem independently, and combine solution to sub-problems to form solution to original problem. • Dynamic programming.Break up a problem into a series of overlapping sub-problems, and build up solutions to larger and larger sub-problems.

  8. Dynamic Programming Applications • Areas. • Bioinformatics. • Control theory. • Information theory. • Operations research. • Computer science: theory, graphics, AI, systems, …. • Some famous dynamic programming algorithms. • Viterbi for hidden Markov models. • Unix diff for comparing two files. • Smith-Waterman for sequence alignment. • Bellman-Ford for shortest path routing in networks. • Cocke-Kasami-Younger for parsing context free grammars.

  9. 6.1 Weighted Interval Scheduling

  10. Weighted Interval Scheduling • Weighted interval scheduling problem. • Job j starts at sj, finishes at fj, and has weight or value vj . • Two jobs compatible if they don't overlap. • Goal: find maximum weight subset of mutually compatible jobs. a b c d e f g h Time 0 1 2 3 4 5 6 7 8 9 10 11

  11. Unweighted Interval Scheduling Review • Recall. Greedy algorithm works if all weights are 1. • Consider jobs in ascending order of finish time. • Add job to subset if it is compatible with previously chosen jobs. • Observation. Greedy algorithm can fail spectacularly if arbitrary weights are allowed. weight = 999 b weight = 1 a Time 0 1 2 3 4 5 6 7 8 9 10 11

  12. Weighted Interval Scheduling Notation. Label jobs by finishing time: f1  f2  . . .  fn . Def. p(j) = largest index i < j such that job i is compatible with j. Ex: p(8) = 5, p(7) = 3, p(2) = 0. 1 2 3 4 5 6 7 8 Time 0 1 2 3 4 5 6 7 8 9 10 11

  13. Dynamic Programming: Binary Choice • Notation. OPT(j) = value of optimal solution to the problem consisting of job requests 1, 2, ..., j. • Case 1: OPT selects job j. • can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j - 1 } • must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., p(j) • Case 2: OPT does not select job j. • must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., j-1 optimal substructure

  14. Weighted Interval Scheduling: Brute Force • Brute force algorithm. Input: n, s1,…,sn , f1,…,fn , v1,…,vn Sort jobs by finish times so that f1 f2 ...  fn. Compute p(1), p(2), …, p(n) Compute-Opt(j) { if (j = 0) return 0 else return max(vj + Compute-Opt(p(j)), Compute-Opt(j-1)) }

  15. 5 4 3 3 2 2 1 2 1 1 0 1 0 1 0 Weighted Interval Scheduling: Brute Force • Observation. Recursive algorithm fails spectacularly because of redundant sub-problems  exponential algorithms. • Ex. Number of recursive calls for family of "layered" instances grows like Fibonacci sequence. 1 2 3 4 5 p(1) = 0, p(j) = j-2

  16. Weighted Interval Scheduling: Memoization • Memoization. Store results of each sub-problem in a cache; lookup as needed. Input: n, s1,…,sn , f1,…,fn , v1,…,vn Sort jobs by finish times so that f1 f2 ...  fn. Compute p(1), p(2), …, p(n) forj = 1 to n M[j] = empty M[0] = 0 M-Compute-Opt(j) { if (M[j] is empty) M[j] = max(wj + M-Compute-Opt(p(j)), M-Compute-Opt(j-1)) return M[j] } global array

  17. Weighted Interval Scheduling: Running Time • Claim. Memoized version of algorithm takes O(n log n) time. • Sort by finish time: O(n log n). • Computing p(): O(n) after sorting by start time. • M-Compute-Opt(j): each invocation takes O(1) time and either • (i) returns an existing value M[j] • (ii) fills in one new entry M[j] and makes two recursive calls • Progress measure  = # nonempty entries of M[]. • initially  = 0, throughout  n. • (ii) increases  by 1  at most 2n recursive calls. • Overall running time of M-Compute-Opt(n) is O(n). ▪ • Remark. O(n) if jobs are pre-sorted by start and finish times.

  18. F(40) F(39) F(38) F(38) F(37) F(37) F(36) F(37) F(36) F(36) F(35) F(36) F(35) F(35) F(34) Automated Memoization • Automated memoization. Many functional programming languages(e.g., Lisp) have built-in support for memoization. • Q. Why not in imperative languages (e.g., Java)? static int F(int n) { if (n <= 1) return n; else return F(n-1) + F(n-2); } (defun F (n) (if (<= n 1) n (+ (F (- n 1)) (F (- n 2))))) Java (exponential) Lisp (efficient)

  19. Weighted Interval Scheduling: Finding a Solution • Q. Dynamic programming algorithms computes optimal value. What if we want the solution itself? • A. Do some post-processing. • # of recursive calls  n  O(n). Run M-Compute-Opt(n) Run Find-Solution(n) Find-Solution(j) { if (j = 0) output nothing else if (vj + M[p(j)] > M[j-1]) print j Find-Solution(p(j)) else Find-Solution(j-1) }

  20. Weighted Interval Scheduling: Bottom-Up • Bottom-up dynamic programming. Unwind recursion. Input: n, s1,…,sn , f1,…,fn , v1,…,vn Sort jobs by finish times so that f1 f2 ...  fn. Compute p(1), p(2), …, p(n) Iterative-Compute-Opt { M[0] = 0 forj = 1 to n M[j] = max(vj + M[p(j)], M[j-1]) }

More Related