1 / 37

CHAPTER 2

UNIVERSITI MALAYSIA PERLIS fakulti teknologi kejuruteraan Jabatan kejuruteraan elektriK. CHAPTER 2. PLT305 -The Basic of Control Theory. Objectives of Chapter. Block Diagram. Control Signal Signal Flow Graph. The Laplace Transform.

fstevenson
Download Presentation

CHAPTER 2

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. UNIVERSITI MALAYSIA PERLIS fakultiteknologikejuruteraan JabatankejuruteraanelektriK CHAPTER 2 PLT305 -The Basic of Control Theory PLT 305 : CONTROL SYSTEMS TECHNOLOGY

  2. Objectives of Chapter • Block Diagram. • Control Signal • Signal Flow Graph. • .

  3. The Laplace Transform The Laplace Transform of a function, f(t), is defined as; Eq A The Inverse Laplace Transform is defined by Eq B *notes

  4. Cont… An important point to remember: • The above is a statement that f(t) and F(s) are transform pairs. What this means is that for each f(t) there is a unique F(s) and for each F(s)there is a unique f(t).

  5. Cont… Transform Pairs: f(t) F(s)

  6. Block Diagram • A block diagram of a system is a practical representation of the functions performed by each component and of the flow of signals. • Cascaded sub-systems: Transfer Function G(s) Input Output

  7. Cont … • Transfer function is the ratio of the output over the input variables. • The output signal can then be derived as; C = GR (a) Multi-variables. Figure 2.0: Block Diagram. Figure 2.1: Block Diagram of Summing Point.

  8. Cont’d… (b) Block Diagram Summing point. Figure 2.3: Block Diagram of Summing Point.

  9. Cont’d… (c) Linear Time Invariant System. Figure 2.4: Components of a Block Diagram for a Linear, Time-Invariant System.

  10. (d) Cascade System. Figure 2.5: Cascade System and the Equivalent Transfer Function. Figure 2.6: Parallel System and the Equivalent Transfer Function.

  11. (e) Summing Junction. (f) Pickoff Points. Figure 1.12: Block diagram algebra for pickoff points— equivalent forms for moving a block (a) to the left past a pickoff point; (b) to the right past a pickoff point.

  12. Basic rules with block diagram transformation

  13. Cont …

  14. Cont …

  15. Example 1 Combining block in cascade Eliminating a feedback loop

  16. Example 2 1. Eliminating a feedback loop 2. Combining block in cascade 3. Eliminating a feedback loop

  17. Example 3

  18. Exercise 1 • Hint: • Apply moving a pickoff point behind the block • Apply eliminating a feedback loop Answer:

  19. Exercise 2 Simplify this diagram

  20. Control Signal E(s) error signal R(s) reference signal Y(s) output signal C(s) output signal B(s) output signal from feedback • Open loop transfer function: • Feedforward transfer function:

  21. Cont … • Feed forward transfer function, • Feedbacktransfer function, • Error, E(s)transfer function,

  22. Cont … (1) • Close-Loop transfer function, (2) (3) Substitute (3) in (1) (4) (5) (6)

  23. Signal Flow Graph. • Multiple subsystem can be represented in two ways; (a) Block Diagram. (b) Signal Flow Graph. • The block diagram. • The signal flow graph,

  24. Cont’d… • Signal flow graph consists only branches which represent system and nodes which represents signals. • Variables are represented as nodes. • Transmittance with directed branch. • Source node: node that has only outgoing branches. • Sink node: node that has only incoming branches.

  25. Cont…

  26. Cont… • Parallel connection, • Signal-flow graph components: (a) system; (b) signal; (c) interconnection of systems and signals

  27. Cont’d… Cascade Parallel Feedback Signal-flow graph development: (a) signal nodes; (b) signal-flow graph; (c) simplified signal-flow graph

  28. Example 4: Signal Flow Graph. Given the block diagram, find the signal flow graph.

  29. Solution:

  30. Mason’s rule where  Total transmittence for every single loop.  Total transmittence for every 2 non-touching loops.  Total transmittence for every 3 non-touching loops.  Total transmittence for every m non-touching loops.  Total transmittence for k paths from source to sink nodes.

  31. Mason’s rule where:  Total transmittence for every single non-touching loop of ks’ paths.  Total transmittence for every 2 non-touching loop of ks’ paths.  Total transmittence for every 3 non-touching loop of ks’ paths.  Total transmittence for every n non-touching loop of ks’ paths.

  32. Example 5: Mason’s Rule Given the block diagram, find the transfers function (Y(s)/R(s)).

  33. 1. The path connection: P1 = G1G2G3G4 P2 = G5G6G7G8 • The loop gains: • L1 = G2H2 • L2 = G3H3 • L3 = G6H6 • L4 = G7H7 • The non-touching taken two at a time: • L1L3 • L1L4 • L2 L3 • L2L4

  34. Compute : • =1-[L1+ L2+ L3+ L4]+[L1L3 + L1L4 + L2L3+L2L4] • Compute k: • Path 1: 1=1- (L3+L4) • Path 2: 2=1- (L1+L2)

  35. Block diagram

  36. G1(s) G2(s) G3(s) G4(s) G5(s) R(s) C(s) V4(s) V3(s) V2(s) V1(s) H2(s) H1(s) G6(s) G8(s) G7(s) V6(s) V5(s) H4(s) Exercise 2 Given the block diagram, find the transfers function (C(s)/R(s)).

More Related