1 / 20

生命之源

被阴森的影子所覆盖的肌肤   在时间的隧道中微微颤抖   这仿佛是追寻命运的指尖   寻找着我的影迹. 生命之源. 序言. 结束语. 生命语言: DNA. 相关文献. 生命基质:细胞. 生命之舟:染色体. 生命密码:蛋白质. 达尔文 - 物种起源. E·D· 托马斯 - 器官移植. S·B· 普鲁西纳 - 阮蛋白. 孟德尔 - 遗传定律. J· 博尔德特 - 免疫. 君特 · 布洛伯尔 - 蛋白质信号. 兰德斯坦纳 — 血型. B· 麦克林托克 - 移动基因. A· 科恩伯格 - 合成 DNA 和 RHA. E·W· 萨瑟兰 - 激素.

gamma
Download Presentation

生命之源

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 被阴森的影子所覆盖的肌肤   在时间的隧道中微微颤抖   这仿佛是追寻命运的指尖   寻找着我的影迹 生命之源 序言 结束语 生命语言:DNA 相关文献 生命基质:细胞 生命之舟:染色体 生命密码:蛋白质

  2. 达尔文-物种起源 E·D·托马斯-器官移植 S·B·普鲁西纳-阮蛋白 孟德尔-遗传定律 J·博尔德特-免疫 君特·布洛伯尔-蛋白质信号 兰德斯坦纳—血型 B·麦克林托克-移动基因 A·科恩伯格-合成DNA和RHA E·W·萨瑟兰-激素 F·H·C克里克-核酸 H·S·加赛-神经搜、纤维机制 M·德尔布鲁克-病毒 J·J·R·麦克劳德-胰岛素 C·R·德·迪夫—细胞 C·R·里谢-抗过敏

  3. 生命语言:DNA DNA和RNA的发现似乎并没有掀起多少波澜,因为它们的发现者们并没有能够很好地说明DNA和RNA与生物遗传基因究竟有什么关系。直到19M年以前,人们还认为,蛋白质才是生命体内主要的遗传物质。 1944年,美国科学家埃弗雷设计了一个很巧妙的实验,间接证实了DNA就是那个被遗传学家们找了很久的基因物质,在DNA身上带有生命的遗传秘密指令。埃弗雷用的实验材料是肺炎球菌。肺炎球菌有两种,一种能致病,表面光滑,称为S型;另一种不能致病,表面粗糙,称为R型。早在1928年,人们就已经发现将杀死了的S型肺炎球菌和活着的R型肺炎球菌一起注入小鼠体内仍会致病,从而说明S型肺炎球菌中存在着某种物质能使R型菌转化成具有致病能力的肺炎球菌。这一结论给了埃弗雷不小的启发,他将S型菌粉碎后,提纯其体内的各种物质,获得了纯度很高的糖类、脂类、蛋白质和核酸等,将这些物质分别与R型菌进行混合培养,发现只有和核酸混合培养的R型菌才能转变为具有致病能力的细菌。由此可见,核酸才是主要的遗传物质。后来,又有科学家发现,RNA也是一个携带遗传秘密的基因物质。

  4. 1951-1952年,美国科学家赫尔希和德尔布吕克通过对噬菌体的研究,进一步证实了埃弗雷的观点。噬菌体是能吃细菌的物体,这种物体离开了细胞是一种无生命的物体,而一旦进入细胞,就具有生物体新陈代谢、繁衍后代等一切特性。赫尔希和德尔布吕克选择了一种专食大肠杆菌的噬菌体,外形像绒科,有短而粗的头和一条尾巴。当这种噬菌体遇到大肠杆菌时,先把尾巴搭住细菌并在细菌身上打开一个孔,然后把自己体内的物质通过小孔注入细菌体内,随后,数以千计的噬菌体形成了,细菌也破裂了。噬菌体的外壳是蛋白质,而内容物只有DNA。噬菌体把自己的DNA注入到细菌体内生出了小噬菌体就证明了DNA具有指导遗传的功能,也说明DNA决定着蛋白质的合成以及蛋白质的性质和构成。蛋白质是组成生命的基础物质,是生命功能的最主要执行者,因此,DNA就是生命遗传的基因物质。   在以上几位科学家所取得的巨大成就的鼓舞下,生物化学家们开始重新考察核酸的结构。

  5. 那么,DNA中的4种核苷酸是怎样连接起来的呢?在很长的一段时间内,许多科学家一直把蛋白质作为生物性状表现的工具,认为核酸是通过蛋白质起作用的,因此,核酸在遗传中的重要作用没有受到足够的重视。直到20世纪40年代末50年代初,人们才发现核酸不但能够水解分裂成碱基片段,而且还可以进行定量分析。1950年,美国生物化学家查尔加夫分析了DNA的组成成分,发现了不同来源的DNA分子中,膘哈类核苷酸和呼院类核苷酸的总数总是相等,腺膘吟核苷酸(A)的数目总是等于胸腺唤院核苷酸阿),鸟源吟核苷酸(G)的数目等于胞陵陡核苷酸(C),即A=T,G=C;A+G=T+C。这就是著名的“查尔加夫规则”。   通过研究,查尔加夫还发现,DNA碱基成分随着来源的不同有很大的差异,4种碱基可以按不同的序列排列,表现出极大的多样性和特异性,能得到4”种不同的排列方式,是一座十分庞大的遗传密码库。而且4种碱基的组合还遵循一个共同的规律:不论DNA的来源如何,在4种碱基中,腺瞟吟(A)总是跟胸腺阐陡河)配对,腺喀院(C)总是跟鸟膘哈(则配对。这种严格的碱基配对叫作“碱基互补原则”。

  6. 生命之源关于地球上的生命究竟是如何诞生的,至今没有一个公认的令人信服的说法,这就给生命的源头蒙上了一层神秘的色彩。   当然,要弄清楚地球生命的起源,就非常有必要知道地球是如何演化的,其中与生命尤为相关的便是大气,因为是它为生命的出现创造了必要的条件。   地球大气的演进可以分为三个阶段:第一代大气即原始大气在地球演化的初期就消失了;第二代大气是被地球内部物理化学反应挤压出来的,称为还原大气。还原大气的显著特征便是缺氧,只是由于后来出现了植物,植物的光合作用提供了大量的氧气,才使得还原大气变成了以氮、氧为主的现代大气,即氧化大气。据此,科学家们推测,在35亿年之前,地球上就已经出现了生命。   推测终归是推测,地球生命起源依然是一个悬而未决的问题。现在,可以肯定地认为,大约在40亿年前,地球上只有岩五和水,地表温度很高,缺氧的大气使来自太阳的紫外线可以畅通无阻地射到地表,而紫外线具有相当强的化学活性,它是生命形成的催化物。诸多关于生命起源的假说就是从这里开始的。 回到首页 背景:卡巴拉生命之树

  7. 查尔加夫的发现大大地推进了人们对DNA的理解程度,下一步就是要搞清楚DNA的化学结构以及它在蛋白质中产生何种作用,从而支配着蛋白质的合成。就在查尔加夫埋头对DNA展开细致研究的同时,运用X射线等先进的物理学方法研究生物大分子的晶体结构也取得了突破性进展。这一工作主要是在英国进行的。50年代初,英国科学家威尔金斯等人用X射线衍射技术对DNA结构潜心研究了3年后发现,DNA是一种螺旋结构。1951年,英国女物理学家富兰克林拍到了一张十分清晰的DNAX射线衍射照片。这些卓有成效的工作为DNA双螺旋结构的发现打下了坚实的基础。   最终完成这一宏伟工程的是美国生物学家沃森和英国生物学家克里克。沃森是埃弗雷噬菌体研究小组的成员,克里克则是英国结构学派的成员。1951年11月,两人在剑桥大学的卡文迪许实验室相遇,并进行了愉快的交谈,很快发现彼此都对DNA分子结构极感兴趣,于是便相约合作研究,试图揭示和阐明遗传信息的结构基础。

  8. 此后,沃森与克里克抓紧时间研究已经获得的各项数据,并于1951年底提出了一个由三股链组成的螺旋结构模型。但是很快,他们便失望了,因为由于算少了DNA的含水量,搭构出来的三股链的样子连他们自己看着都觉得别扭。第一个模型失败了。1952年7月,克里充意外地从查尔加夫那里得知DNA所含的4种碱基含量并不相等,他意识到,果真如此,那么只有一种可能,那就是它们只能是两条链上碱基互相以配对的形式而存在。1953年2月,克里克与沃森又得到了关于DNA结构的X射线衍射照片和新数据。根据各方面对DNA研究的信息和深入细致的研究分析,沃森和克里克形成了一个共识:DNA是一种双链螺旋结构。于是,他们搭建了一个DNA双螺旋模型,并于1953年4月将新的DNA结构模型在权威刊物帕然》杂志上公布于世。   这是一个极为成功、无懈可击的DNA分子结构模型,它由两条右旋但反向的链在同一个轴上盘绕而成,像一个螺旋形的梯子,生命的遗传密码就列在梯子的横档上。DNA双螺旋结构模型完美地说明了遗传物质的遗传、生化和结构的主要特征,它的提出是生物学史上划时代的事件。从此,遗传学的历史和生物学的历史正式从细胞阶段进入了分子阶段。

  9. 由于这一划时代的贡献,沃森、克里克和英国科学家威尔金斯共获1962年度诺贝尔医学和生理学奖,这一殊荣今完全出乎意料的克里克、沃森感慨万千,激动不已。克里克在他的回忆录《狂热的追求——科学发现之我见》中表述了这种心情:“双螺旋确实是一种了不起的分子,也是一个了不起的发现。现代人的历史约有5万年,文明的历史几乎不到1万年,美国的历史仅仅200多年,可是RNA、DNA都至少存在了几十亿年。从古至今,双螺旋就一直存在并活跃着,可是我们还是近些年才知道。当然,值得庆幸的是,我们是地球上最先意识到它的存在的生物。有关我们发现双螺旋的文章如此之多,我很难再补充什么。我想说,DNA是由4个字母的语言写成的长长的生命信息,这是生命的语言……”  沃森与克里克发现的DNA分子双螺旋结构模型有4个重要特点:一,DNA分子是由两条成对的链以双螺旋的方式接一定空间距离相互平行盘绕,像一根扭曲的大麻花。DNA分子的长链从头至尾都严格遵守碱基配对原则。二,两条长链的方向是相反的。三,腺瞟吟(A)   跟胸腺嚼咛灯)以两氢键联结配对,而胞喷促(C)与鸟瞟吟(G)却以三氢键联结配对。比如,一条链上的碱基排列顺序是TCGACTGA……,AF么,另一条链上的碱基排列顺序一定是AGCTGACT……。这就意味着,DNA中一条链的碱基顺序一旦确定,那么另一条链的碱基顺序也就确定了。四,DNA双螺旋结构模型表明它的结构对于碱基的顺序不存在任何限制。

  10. 据科学家统计,一个体细胞的全部DNA“螺旋楼梯”长约2米。若将一个人的全部DNA连接起来,可以在地球和太阳之间扯上80个来回。   在那个伟大的发现之后,沃森与克里克从未停止过对生命更深层次的探索。不久,他们又给《自然》杂志撰写第二篇文章,提出了DNA分子的复制假说:在体细胞的有丝分裂中,每个DNA分子双螺旋先分解成两个单螺旋,每个单螺旋再利用细胞中现成的游离膜吟、啧啧以及酶重建失去的那一半。实际上,可以形象地认为,每个单链好像“模子”,按照某种特定方式浇注出一个个与“模子”相匹配的产品。因此,生命体内DNA分子由一个变为两个的复制被称为“半保留复制”。沃森和克里克阐述的关于DNA分子的复制假说得到了当时科学界广泛认同,人们开始认识到,生命就是一个不断复制和进化的过程,而这个过程起始于DNA的复制,从而保证了父辈的生命密码像拷贝一样准确无误地传给了子孙。至此,千百年来一直困扰人类的生命遗传之谜终于被解开了。到了20世纪90年代中期,分子生物学家的研究发现,所有的DNA都有一种语言的特性:分子中的每4种碱基对必定组成4个字母,由此构成长的文字系列。事实上,编译出基因中信息的DNA系列已经被生物学家形象地称为“生命的语言”,他们为了把“生命的语言”“逐字表述出来,让DNA通过一系列语言的测试,测试的结果令人惊讶:一部分DNA显示的文字,其构造竟然同天然的语言十分相似,而另一部分DNA显示的文字则形同“天书”,完全不像天然的语言,而这一部分DNA恰恰含有能编译密码、制造蛋白质的基因。 回到首页

  11. 生命基质:细胞  这是一群围绕着自己产下的印乱转的昆虫,它们似乎在举行某种欢庆仪式,以表达新生命产生的庄严与神圣。   自从生命在地球上出现以来,生物区对生命的产生方式和生命的萌芽物产生了某种特有的崇拜与依恋槽结——鸟类精Its\孵卵,人类十目怀路,生命惟有在母性的抚爱中才能够诞生井茁壮成长,这是生命的本能。直到1665年英国人罗伯特·胡克发现了细胞,解开生命之谜的大门才渐渐开启。当年,胡克用他的那架老掉牙的显微镜观察软木片的切片时竟然发现了许多小空洞,空洞中布满了气孔,除此之外一无所有。那时候,胡克并不知道,他亲自打开了充满了奥妙与神奇的生命宝盒。现在,显微镜的发展使人们已经十分清楚,所有的生命都是由这些被称为“细胞”的小率洞组成的。细胞乃是生命的原型与基质,其内部结构及功能相当复杂,远非胡克所认识得那样简单。今天,人们在高倍显微镜下可以清晰地看到细胞的内部结构。植物细胞的外面有细胞壁,细胞与细胞之间有一层胶状物,把两个细胞壁紧紧地粘合在一起。在相邻两个细胞之间的壁上有胞间连丝,使细胞之间彼此互通。此外,植物细胞内还有细胞质和细胞核。细胞质内有核糖体、内质网、高尔基体和液泡等内容物。核糖体是合成蛋白质的地方,内质网和高尔基体有合成、包装和运输物质的功能。细胞质内还有丝状和管状结构,类似细胞的肌肉和骨架,与细胞的运动有关。细胞核内有核膜,使核与细胞质分开。此外还有染色质和核仁。细胞核是细胞的“中枢”,是遗传信息储存、复制和转录的场所。细胞内还有两个较大的细胞器,就是线粒体和质体。线粒体能起呼吸作用。动物细胞与植物细胞最显著的区别是它的表面由一层质膜包裹,控制着细胞内外物质的运输。在电子显微镜下,质膜的结构变化多端,有的向内折叠成手指状,有的向外凹陷,形成月芽状。

  12. 有的细胞,人的肉眼就可以看见,比如鸟类的蛋,最大的直径达10厘米;最小的细胞直径只有0.互微米,比如原始细菌,要用高倍显微镜才能够看清楚。细胞的形状千差万别,有球体、多面体、纺锤体和柱状体等。通常,细胞的结构和功能密切相关,如神经细胞能够伸展好几米,有利于传导外界的刺激信息。   以上内容都是今天人们所熟知的自然常识,而在19世纪30年代德国植物学家施莱登和生理学家施旺创立细胞学说之前,细胞在人们心目中的印象还是相当模糊的。在他们所共同创立的细胞学说中,细胞被认为是“一个具有生命特性的有机体,整个动物和植物体乃是细胞的集合体,细胞是生命体结构与功能的基本单位,它们依照一定的规律排列在动植物体内”。   施莱登和施旺均探讨过细胞的成长发育过程,他们深信,既然所有的生命在结构上都由细胞组成,那么所有生命的发生也应当从一个细胞开始,组织的发育必定是通过细胞的增殖进行的。施莱登、施旺的以上观点后来被德国生物学家韦尔素概括为一句名言:“一切细胞都来自细胞。”韦尔素的这句名言也暗含了另外一层意思:一切生命均来自于生命,因此,细胞也可以恰如其分地被认为是全部生命的基质。   现在看来,细胞学说的创立和细胞对于生命的重要性如同原子学说和原子对于物理、化学的重要性,它们把生命的奥秘和生命本身浓缩到了一个微观境界。由于细胞的发现,人们不仅知道一切高能有机体都是按照一个共同的规律生长发育的,而且通过细胞的变异,不断地改变自己,并向更高的生命层次迈进。和达尔文进化论一样,细胞学说也被誉为19世纪的三大发现之一。 回到首页

  13. 生命之舟:染色体   细胞英文名为“h1,意为小房间。那么,既然细胞是生命的基质,生命的全部奥秘必定都是在这个小房间里了,只是需要一把开启房门的钥匙。这把钥匙就是染色体,它同时也被称为生命的载体。   发现染色体的过程也颇为复杂。早期的科学家发现,如果人为他将一个单细胞生物分成两半,使其中一半含有完整的细胞核,另一半不含细胞核,那么,有核的一半就能够分裂、生长,另一半则趋于死亡。由此,人们初步认识到细胞的分裂实际上是细胞核的分裂。于是,科学家们把视线聚焦到了细胞的内核上;而且,他们还发现,某些染料可以将细胞核染色,使它在整个细胞中变得十分清晰,便于观察。 1848年,德国植物学家霍夫迈斯特在花粉母细胞中隐约看到了核内的丝状物O1879年,德国生物学家弗莱明发现,细胞核内分布着~些丝状物,这些丝状物能够被染料染色。于是,弗莱明把这些丝状物称为“染色质”,后来被德国解剖学家瓦尔德尔改称为“染色体”。1882年,弗莱明在他的一本描述细胞分裂过程的著作中把整个细胞的分裂过程称为“有丝分裂”,因为他确信,染色质在其中起着至关重要的作用。后来,科学家们发现,同一物种内的生物,细胞内都含有同样数目的染色体,细胞中的染色体是成对存在的。在有丝分裂过程中,染色体的数目先加倍,然后细胞再一分为二,因此,分裂后的两个子细胞各含有与原母细胞相同数目的染色体。和各类生物殊途同归,人类也有染色体。1959年,人们终于弄清楚,人类染色体共有46条,对对。从来源b来说,有一半来自父亲,另一半来自母亲。

  14. 很有必要描绘一下减数分裂。减数分裂也称作“成熟分裂”,是指在性成熟的生殖细胞中,性母细胞经过两次连续分裂,染色体在整个分裂过程中只复制一次,形成的4个子细胞中的染色体数目减少到原来细胞的一半。减数分裂形成的细胞中,只有一套(组)染色体,这种细胞也叫作单倍体细胞,常见的如生物体内的精子与卵子。当精子与卵子受精形成一个细胞后,受精卵(或合子)中的染色体就变成了两套(组),由此出现了一个新生命的开始。显而易见,减数分裂及精卵结合是保证生命体世代交替和种类稳定的重要环节。   当人们认识到生物体内生殖细胞的减数分裂与体细胞的有丝分裂同样离不开染色体时,把染色体比喻作生命之舟并不夸张。因为体细胞的有丝分裂导致生命体的成长壮大,而生殖细胞的减数分裂则导致了生命体的生生不息一生命的过程无非如此。   染色体的先复制,再随着细胞的分裂而分裂可以很好地解释生命的生活与延续状态,但是,生命为何有性别之分呢?这个问题引发了人们浓厚的兴趣O20世纪初,德国生物学家亨金用切片法研究半翅目昆虫的减数分裂时,发现在性母细胞减数分裂的后期有一条染色体在向细胞一极移动时处于落后状态。亨金对这条染色体感到很陌生,就随便给它起了个“X染色体”的名词,表示这是一条连他也没弄清楚的染色体。1902年,美国人麦克朗认为这条“X染色体”可能与昆虫的性别有某种内在的联系,他苦思冥想,但最终没有找到说服自己的理由。直到1905年,丹麦人威尔逊发现了在半翅目和直翅目的许多昆虫中,雌性个体的细胞中具有两套普通的染色体,称作“常染色体”,另外还有两条“X染色体”,而雄性个体的细胞中也有两套常染色体,但是只有一条“X染色体”。由此,威尔逊激动地得出了结论:动物的雌、雄性别可以根据细胞中“X”染色体的多少加以区别,“X染色体”因而也被他称为“性染色体”。惊喜交加的威尔逊忽视了雄性个体的那条“X染色体”身边还有一条不露声色的同伴:“Y染色体”,这种染色体呈钩型,比“X染色体”短小。这条被威尔逊丢失的“Y染色体”三年后被生物学家史蒂芬斯发现。 回到首页

  15. 生命密码:蛋白质   在层层剥离生命的奥秘显现出生命的全部密码之前,很有必要提一提蛋白质。这个名词对于许多人都不会陌生,“高蛋白”几乎成了高营养的代名词。虽然蛋白质在生物学上的重要性并非全在于营养方面,但是,在生命体这座雄伟大厦的图纸上,真正构筑起大厦并行使各种功能的主要还是蛋白质,它是生命功能最忠实的执行者。   蛋白质是一类含氮的生物高分子,其基本组成单位是氨基酸。构成蛋白质的氨基酸只有20种,其中有8种是人体内无法合成的,需要从食物中摄取。蛋白质可以分为两大类,一类是简单蛋白质,它们的分子只由氨基酸组成,另一类是结合蛋白质,它们的分子由氨基酸和部分非蛋白质部分组成,结构相当复杂…··二总之,蛋白质是一种高分子有机化合物,种类繁多。由于不同生命体细胞内存在着不同的蛋白质,所以生命体能显示出不同的性状。   显然,生命体无法直接将它特有的蛋白质传递给后代,犹如父母并不能把他们的眼睛、鼻子、嘴唇直接传给子女一样。在这一具有决定性意义的传递过程中,起关键作用的只有DNA,DNA可以把遗传信息表现为细胞的结构和功能,它可以“指示”细胞合成自身生命活动所需要的一切蛋白质,蛋白质再进而显示出生物体的遗传性状。   那么,DNA如何“指示”细胞合成蛋白质?这一过程的复杂程度在人们没有破译出生命遗传密码之前几乎难以设想。因为DNA是由4种碱基组成,而蛋白质却由20种氨基酸组成,4种碱基若能够决定20种氨基酸的排列组合,一定会有某种特别的编码方式。1944年,著名的量子物理学家薛定愕出版了《生命是什么》一书,提出了遗传密码的思想。

  16. 生命,也许是宇宙之间唯一应该受到崇拜的因素。生命的孕育、诞生和显示本质是一种无比激动人心的过程。生命像音乐和画面一样暗自挟带着一种命定的声调或血色,当它遇到大潮的袭卷,当它听到号角的催促时,它会顿时抖擞,露出本质的绚烂和激昂。当然,这本质更可能是卑污、懦弱、乏味的;它的主人并无选择的可能。  应当承认,生命就是希望。应当说,卑鄙和庸俗不该得意过早,不该误认为它们已经成功地消灭了高尚和真纯。伪装也同样不能持久,因为时间像一条长河在滔滔冲刷,卑鄙者、奸商和俗棍不可能永远戴着教育家、诗人和战士的桂冠。在他们畅行无阻的生涯尽头,他们的后人将长久地感到羞辱。  我崇拜生命。  我崇拜高尚的生命的秘密。我崇拜这生命在降生、成长、战斗、伤残、牺牲时迸溅出的钢花焰火。我崇拜一个活灵灵的生命在崇山大河,在海洋和大陆上飘荡的自由。  是的,生命就是希望。它飘荡无定,自由自在,它使人类中总有一支血脉不甘于失败,九死不悔地追寻着自己的金牧场。生命,也许是宇宙之间唯一应该受到崇拜的因素。生命的孕育、诞生和显示本质是一种无比激动人心的过程。生命像音乐和画面一样暗自挟带着一种命定的声调或血色,当它遇到大潮的袭卷,当它听到号角的催促时,它会顿时抖擞,露出本质的绚烂和激昂。当然,这本质更可能是卑污、懦弱、乏味的;它的主人并无选择的可能。  应当承认,生命就是希望。应当说,卑鄙和庸俗不该得意过早,不该误认为它们已经成功地消灭了高尚和真纯。伪装也同样不能持久,因为时间像一条长河在滔滔冲刷,卑鄙者、奸商和俗棍不可能永远戴着教育家、诗人和战士的桂冠。在他们畅行无阻的生涯尽头,他们的后人将长久地感到羞辱。  我崇拜生命。  我崇拜高尚的生命的秘密。我崇拜这生命在降生、成长、战斗、伤残、牺牲时迸溅出的钢花焰火。我崇拜一个活灵灵的生命在崇山大河,在海洋和大陆上飘荡的自由。  是的,生命就是希望。它飘荡无定,自由自在,它使人类中总有一支血脉不甘于失败,九死不悔地追寻着自己的金牧场。 回到首页

  17. 薛定愕认为,莫尔斯电码只用了点和划两种符号便可产生几十种代号,基因分子的编码方式必定具有雷同之处。薛定愕未能走得再远一些,而是把这个很伤脑筋的问题留给了业余生物爱好者、美国天文学家盖莫夫。1953年沃森和克里克关于DNA双螺旋结构模型发表之后,盖莫夫在1954年2月便提出了一个大胆的设想:DNA分子中的4种核音酸分解形成各种不同的组合,每一种组合就是一种氨基酸的符号。盖莫夫的设想立即在美国招致非议,倒不是他说得没有道理,而是他作为一个天文学家,“管得太宽了”,不该在生物学界“评头论足”。盖莫夫只好转而求助于丹麦的一家科学杂志,没想到引起了很多物理学家的关注。1955年,这些物理学家凭借着惊人的抽象思维能力,提出了三个核音酸组合在一起决定着一个氨基酸的设想。 1957年,克里克在吸收物理学家关于DNA组合编码的思想、对核苷酸可能是蛋白质合成的密码进行研究时提出了“三联体密码”假说:在DNA分子中,三个核苷酸组成一种氨基酸的密码,除了每个氨基酸有自己的“三体密码子”外,多余的密码子是蛋白质合成或终止合成的符号。此外,也确实存在着一种氨基酸有几种不同的密码子的情况。至此,纷繁复杂的生命最终在三体密码的基础上获得了统一,基因的真实面目也大白于天下:它只是一个密码的系统,而不是人们原先想像的那样是某种神秘的物质实体。生物界从最简单的病毒到最高等的人类,基本活动都是合成蛋白质的活动,而且无一例外地都服从统一的、由核各酸组合而成的密码的支配。所有的生物都在按照这个密码体系进行着生命接力棒的传递。接下来又发生了一件轰动20世纪生命科学界的大事。20世纪60年代,美国生物学家尼伦伯格等人破译了DNA中核苷酸组合成的生命遗传密码。1961年,美国生物学家尼伦伯格等人合成了由许多“尿核青酸”连结成的长链,称为“多聚尿着酸(U-U-U-U……)”,他们把这条人工合成的长链加入含有多种氨基酸、酶、核糖体和一些合成蛋白质所必需的溶液中。不久,奇迹出现了,这种溶液中形成了一条只有苯丙氨酸连接而成的多肽链。于是,尼伦伯格等人断定苯丙氨酸的三联体密码是U-UU。此后,尼伦伯格等人进行了更为复杂的试验,并采用类似的方法确定了亮氨酸、异亮氨酸等多种氨基酸的密码。到了1967年,他们破译了20余种氨基酸的密码,还发现了不少代表着起始、终止和标点的密码。后来,人们把尼伦伯格等人破译的生命遗传密码组合成一部精致的密码字典,利用这部特殊的字典便可以随心所欲地找到各种氨基酸和它所对应的遗传密码。

  18. 查阅遗传密码字典的时候,先取左边(第一碱基)的一个字母,再取上面(第二碱基)   的一个字母,最后,再取右边(第三碱基)的一个字母,合起来就是一个氨基酸。例如GAG代表谷氨酸,AAU代表天冬酚胺等。非常有趣的是,密码里还有句号,用来表示氨基酸连成I一个段落。不妨借助这部生物字典翻译下列一段密码:GCA(丙氨酸)、AAC(天冬酚胺)、UCC(丝氨酸)。GGU(甘氨酸)、AUC(异亮氨酸)、UAC(酪氨酸)、UAA(句号)、UAG(句号)、GGA(甘氨酸)、UUA(亮氨酸)、CCC(脯氨酸)、AUG(甲硫安酸)、UCG(丝氨酸)、AAG(赖氨酸)、ACA(苏氨酸)、AAG(赖氨酸)。原来,它就是噬菌体R17身上的部分遗传密码。科学家指出,从细菌到人类的一切生物的遗传密码都能从遗传密码字典上找到(附:遗传密码字典)。   当科学家们破译了决定生命基础的蛋白质的氨基酸合成密码后,遗传信息的传递机理便成了人们迫切渴望获知的热门话题。可是,在当时,对遗传信息的传递过程作出合情合理的解释,实在令人望而生畏。因为细胞学所掌握的事实是,所有DNA都在细胞核内,而蛋白质却存在于细胞质中,像DNA这样硕大的分子是无法随意进入细胞质的。但是,DNA的遗传密码如果不能被带入细胞质就无法合成特定的蛋白质,换言之,这个密码就无所作为。于是,科学家们大胆地推测,一定有一个传递信息的使者,从DNA那里拷贝了一份密码文件,并带入了细胞质中。那么,这个传递信息的使者染色体是由许多记录遗传信息的小基因区段组成,每一个基因区段负责控制生物一种性状或者负责几种相关的性状,或者是几个基因区段负责控制生物体某方面的性状等等,一旦这些正常基因发生变化就会变成异常基因,相应地由它决定的正常性状也就变成了异常性状。突变基因产生后就会通过精、卵、受精卵传给下一代。但在DNA模型尚未建立之前,弗里斯无法很好地解释突变的内在机制。

  19. 弗里斯的突变理论后来不断得到证实。较为著名的有这样一个实例:是谁呢?经过试验和观察,人们终于发现,这个信使就是RNA。RNA在合成蛋白质过程中的作用很快被实验所证明:科学家们用一种除去DNA的酶除去细胞中99%的DNA,结果发现细胞仍有合成蛋白质的能力,而如果用另一种除去RNA的酶,只要除去35%的RNA,细胞就彻底失去了合成蛋白质的能力。 RNA的结构与DNA极为相似,也是由核苷酸连接而成的长链,只不过DNA是双链,RNA是单链。如果在DNA单链的鸟源吟(G)处连上一个跑呼咬(C),在腺瞟吟(A)处接上一个尿喷院(U),这样形成的一条新链就是RNA。   现在,人们已经知道,细胞核内DNA的遗传信息必须由RNA翻译过来并带入细胞质才能合成蛋白质。可是,细胞为什么不直接把氨基酸直接运到细胞核中的DNA那里合成,却必须要经过RNA的翻译呢?科学家们的回答近似神话,听起来饶有趣味:生物细胞中的DNA可是生物体传宗接代的根本,它如同一份绝密的构造生命的图纸,是万万不能遗失的。所以这份蓝图只能锁在保险箱——细胞核中,只许抄写,不能借出或销毁。此外,DNA分子太大太长,细胞核这个工作车间太小了,装配起来甚为不便,因此,必须依靠翻译家的帮助,才能完成如此程序化的工。于是,在DNA的指挥下,翻译家RNA不辞辛劳,帮助生物体合成各种各样的蛋白质。   在生物界,蛋白质的种类是一个天文数字。仅就人体而言,细胞内的蛋白质可能就有1 种以上,这就是人体表现出各种性状的物质基础。例如子女有的地方像父亲,有的地方像母亲,那是因为子女从父母那里得到了一张独特的生命蓝图,从而合成了表现一定性状的蛋白质,产生了一定的遗传性状。至于子女和父母有许多不像的地方则是因为有些遗传性状受到环境的影响而无法表现。

  20. 完成把“密码”语言译成蛋白质的20多种氨基酸语言的重任是由三种RNA共同肩负的,一种是信使RNA(m-RNA);另一种是转运RNA(t-RNA);再一种是核糖体RNA(r-RNA),它们不知疲倦地分工协作,有条不紊地进行着自己的本职工作。   当细胞开始制造蛋白质时,细胞核内双螺旋的DNA便分解成为两个单链,信使RNA把DNA上合成蛋白质的密码“抄录”下来,然后被派往细胞质,在细胞质中与蛋白质的制造车间核糖体结合起来。这时候,转运RNA便忙活起来,它能够识别信使RNA上的遗传密码,因此充当了“译员”的角色。转运RNA表现得相当活跃,它来回工作,把相应的游离氨基酸“领到”核糖体那里报到,使不同的氨基酸在核糖体上依据信 回到首页

More Related