400 likes | 523 Views
Application of the Quark-meson coupling model to dense nuclear matter. 2005 KPS Meeting Chon Buk University. C. Y. Ryu , C. H. Hyun, and S. W. Hong. Department of Physics, Sungkyunkwan University. Application. + in nuclear matter Hadron masses in neutron stars
E N D
Application of the Quark-meson coupling model to dense nuclear matter 2005 KPS Meeting Chon Buk University C. Y. Ryu, C. H. Hyun, and S. W. Hong Department of Physics, Sungkyunkwan University
Application • + in nuclear matter • Hadron masses in neutron stars • kaon condensation in neutron stars with hyperons Outline • Introduction • - The quark-meson coupling (QMC) model • Results and summaries
Introduction T (MeV) ~150
Quark-meson coupling (QMC) model σ, ω • QMC Lagrangian in mean field approximation
Meson fields in QMC model σ meson field : ωmeson field :
MQMC model • Effective mass of a baryon Bag energy of a baryon Effective mass of a baryon
Effective mass of + + in symmetry nuclear matter + (1540 MeV) : uudds
Chemical potential of + Chemical potential of K and N • Chemical potential of K, N, + in medium
Summaries • The effective mass of + in naïve quark model. • The possibility of decay of + in medium.
Energy density .vs. pressure Energy density Pressure
Mass-radius relation of neutron star • Tolman-Oppenheimer-Volkoff equation • Mass of neutron star
Scaled effecive Lagrangian • The maximum mass and radius of • neutron star increase. Summaries • The observed compact stars • MJ0751+1807 = (2.2 0.2) M, • M4U1700-37 = (2.44 0.2) M
Exotic phenomena in Neutron star Kaon condensation in neutron star with hyperons
J. Schaffner-Bielich, V. Koch & M. Effenberger, Nucl. Phys. A669 (2000) 153. A. Ramos & E. Oset, Nucl. Phys. A671 (2000) 481. A. Cieply, E. Friedman, A. Gal & J. Mares, Nucl. Phys. A696 (2001) 173. Shallow optical potential V0+iW0=-50 –i 60 MeV Deep optical potential V0+iW0= -120– i10 MeV Y. Akaishi & T. Yamazaki, Phys. Rev. C65 (2002) 044005. N. Kaiser, P.B. Siegel & W. Weise, Nucl. Phys. A594 (1995) 325. K- optical potential
Strange tribaryons S0(3115) and S+(3140) Very strong attraction between K- and nucleons KEK PS-E471
OZI rule : s-quark doesn’t interact with u(d)-quark • assume only s-s quarks interaction : • strange meson fields, • scalar σ* (f0=975 MeV) and vector φ (=1020 MeV) • Theory - the extended QMC model Quark-meson coupling (QMC) model : MIT bag model + σ – ω - ρ mesons
The extended QMC model for baryon octet σ – ω–ρ (only u(d) quark) + σ* – φ (only s quark) Lagrangian density for baryon octet B = p, n, Λ, Σ+, Σ0, Σ-, Ξ0, Ξ- l = e, μ
Effective mass of a baryon Bag energy of a baryon Effective mass of a baryon
K- in neutron star matter with hyperons Kaon Lagrangian : Effective mass of a kaon : Real part of optical potential at the saturation density UK (ρ0) = - gσK σ (ρ0)– gωK ω (ρ0) |UK (ρ0)| = 80, 100, 120 and 140 MeV
Meson fields on kaon condensation σ meson : σ* meson : ω meson : φ meson : ρ meson :
Chemical equilibrium : μK = μe • Charge neutrality : - n K = 0 • Baryon number conservation : Three conditions in neutron stars
Chemical potential Dispersion relation for s-wave condensation for K- (us) Baryon energy Chemical potential of baryons and kaon μK = ωK
gσK : free parameter Coupling constants • Quark counting rule and SU(6) symmetry
Results Relative populations in neutron star
Equation of state(Energy density vs. Pressure) Energy density Pressure
Mass-radius relation of neutron star • Tolman-Oppenheimer-Volkoffequation • Mass of neutron star
2. The possibility of very deep optical potential (phases) - shallow : nuclear- hyperonic -Kaonic+hyperonic phase - deep : nuclear – kaonic – kaonic+hyperonic phase Summaries • The populations of particles and the EoS are very sensitive to the values of optical potential. The values have to be fixed by experiments. 3. As UK increases, the EoS becomes softer at low densities, while becomes stiffer at high densities. Deep potential The light and small neutron stars