1.51k likes | 1.79k Views
KATODA. ANODA. Elementy Elektroniczne. Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl). DIODA PÓŁPRZEWODNIKOWA. Elementy Elektroniczne.
E N D
KATODA ANODA Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) DIODA PÓŁPRZEWODNIKOWA
Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) ZŁĄCZE P-N półprzewodnik typ p (dominujące przew. dziurowe) pp – dziury, nośnikiwiększościowe np – elektrony, nośniki mniejszościowe NA(-)– zjonizowane ujemnie akceptory (nieruchome)
Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) ZŁĄCZE P-N półprzewodnik typ n (dominujące przew. elektronowe) nn – elektrony, nośnikiwiększościowe pn – dziury, nośniki mniejszościowe ND(+)– zjonizowane dodatnio donory (nieruchome)
Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) ZŁĄCZE P-N p n półprzewodnik typ p półprzewodnik typ n xj „złącze technologiczne”
Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) ZŁĄCZE P-N Złącze p-n jest formowane w materiałach półprzewodnikowych przy wykorzystaniu specjalnych operacji technologicznych, takich jak: domieszkowanie dyfuzyjne, implantacja jonów, epitaksja. Formowanie złącza p-n jest podstawową operacją przy wytwarzaniu struktur półprzewodnikowych, czy układów scalonych
Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) ZŁĄCZE P-N Złącze skokowe Warstwa EPI typu p podłoże (Si) typu n N ND NA xj x
Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) ZŁĄCZE P-N Złącze liniowe Warstwa dyfuzyjna typu p podłoże (Si) typu n N NA ND xj x
Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) USTALANIE SIĘ STANU RÓWNOWAGI W NIESPOLARYZOWANYM ZŁĄCZU P-N
Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) USTALANIE SIĘ STANU RÓWNOWAGI W NIESPOLARYZOWANYM ZŁĄCZU P-N p n xj
Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) USTALANIE SIĘ STANU RÓWNOWAGI W NIESPOLARYZOWANYM ZŁĄCZU P-N p n xj
Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) USTALANIE SIĘ STANU RÓWNOWAGI W NIESPOLARYZOWANYM ZŁĄCZU P-N p n xj
Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) USTALANIE SIĘ STANU RÓWNOWAGI W NIESPOLARYZOWANYM ZŁĄCZU P-N Istnienie gradientu koncentracji nośników jest przyczyną dyfuzji: elektronów z obszaru typu n do obszaru typu p dziur z obszaru typu p do obszaru typu n
Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) USTALANIE SIĘ STANU RÓWNOWAGI W NIESPOLARYZOWANYM ZŁĄCZU P-N p n dyfuzyjny strumień elektronów (nośniki większościowe) dyfuzyjny strumień dziur (nośniki większościowe) xj
Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) USTALANIE SIĘ STANU RÓWNOWAGI W NIESPOLARYZOWANYM ZŁĄCZU P-N p n -xp xj +xn
Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) USTALANIE SIĘ STANU RÓWNOWAGI W NIESPOLARYZOWANYM ZŁĄCZU P-N W wyniku dyfuzyjnego przepływu nośników większościowych obszar w pobliżu złącza zastaje zubożony w nośniki. Przyjmuje się, że obszar pomiędzy współrzędnymi (-xp) i (+xn) jest całkowiciepozbawiony nośników W obszarze zubożonym pozostają nieskompensowane ładunki zjonizowanych donorów i akceptorów
Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) USTALANIE SIĘ STANU RÓWNOWAGI W NIESPOLARYZOWANYM ZŁĄCZU P-N E p n -xp xj +xn
Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) USTALANIE SIĘ STANU RÓWNOWAGI W NIESPOLARYZOWANYM ZŁĄCZU P-N W konsekwencji w obszarze zubożonym, pomiędzy współrzędnymi (-xp) i (+xn), pojawia się: pole elektryczne o natężeniu E
Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) USTALANIE SIĘ STANU RÓWNOWAGI W NIESPOLARYZOWANYM ZŁĄCZU P-N E p n -xp xj +xn
Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) USTALANIE SIĘ STANU RÓWNOWAGI W NIESPOLARYZOWANYM ZŁĄCZU P-N Pojawienie się pola elektrycznego powoduje powstanie prądów unoszenia dziur i elektronów, które dotrą do obszaru zubożonego
Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) USTALANIE SIĘ STANU RÓWNOWAGI W NIESPOLARYZOWANYM ZŁĄCZU P-N p n unoszeniowy strumień elektronów (nośniki mniejszościowe) unoszeniowy strumień dziur (nośniki mniejszościowe) xj
p n E -xp xj +xn Obszar zubożony Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) USTALANIE SIĘ STANU RÓWNOWAGI W NIESPOLARYZOWANYM ZŁĄCZU P-N
Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) USTALANIE SIĘ STANU RÓWNOWAGI W NIESPOLARYZOWANYM ZŁĄCZU P-N p n E dyfuzja unoszenie unoszenie dyfuzja Obszar złącza
Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) USTALANIE SIĘ STANU RÓWNOWAGI W NIESPOLARYZOWANYM ZŁĄCZU P-N Prądy dyfuzji (nośniki większościowe) Prądy unoszenia (nośniki mniejszościowe)
Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) MODEL PASMOWY ZŁĄCZA P-N
W W p n WC WF W2 Wi W1 WV x x Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) MODEL PASMOWY ZŁĄCZA P-N WC Wi WF WV
W p n bariera energetyczna WC W= W1+ W2 WC Wi W1 WF WF W2 Wi WV WV x Obszar złącza Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) MODEL PASMOWY ZŁĄCZA P-N
Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) NAPIĘCIE DYFUZYJNE-BARIERA POTENCJAŁU W złączu pojawia się bariera energetyczna Napięcie dyfuzyjne (bariera potencjału)
Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) NAPIĘCIE DYFUZYJNE-BARIERA POTENCJAŁU
Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) NAPIĘCIE DYFUZYJNE-BARIERA POTENCJAŁU
Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) NAPIĘCIE DYFUZYJNE-BARIERA POTENCJAŁU
Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) NAPIĘCIE DYFUZYJNE-BARIERA POTENCJAŁU
Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) NAPIĘCIE DYFUZYJNE-BARIERA POTENCJAŁU
Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) NAPIĘCIE DYFUZYJNE-BARIERA POTENCJAŁU • Napięcie dyfuzyjne (bariera potencjału) zależy od: • Stopnia domieszkowania poszczególnych obszarów złącza • Materiału z którego wykonane jest złącze p-n • Temperatury
Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) NAPIĘCIE DYFUZYJNE-BARIERA POTENCJAŁU
Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) SZEROKOŚĆ OBSZARU ZUBOŻONEGO – SZEROKOŚĆ ZŁĄCZA
Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) SZEROKOŚĆ OBSZARU ZUBOŻONEGO – SZEROKOŚĆ ZŁĄCZA p n Obszar złącza xd -xp +xn 0
Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) SZEROKOŚĆ OBSZARU ZUBOŻONEGO – SZEROKOŚĆ ZŁĄCZA
Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) SZEROKOŚĆ OBSZARU ZUBOŻONEGO – SZEROKOŚĆ ZŁĄCZA
Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) SZEROKOŚĆ OBSZARU ZUBOŻONEGO – SZEROKOŚĆ ZŁĄCZA polaryzacja w kierunku przewodzenia (+U) polaryzacja w kierunku zaporowym (-U)
Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) SZEROKOŚĆ ZŁĄCZA – POLARYZACJA W KIERUNKU „PRZEWODZENIA” Wzrost napięcia polaryzującego (+U) powoduje zmniejszanie się szerokości złącza. Jeżeli wartość napięcia polaryzującego jest równa wartości bariery potencjału, wówczas „znika” obszar zubożony, czyli : xd = 0
Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) SZEROKOŚĆ ZŁĄCZA – POLARYZACJA W KIERUNKU „PRZEWODZENIA” p n p n xd1 xd0 napięcie polaryzujące napięcie polaryzujące
Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) SZEROKOŚĆ ZŁĄCZA – POLARYZACJA W KIERUNKU „PRZEWODZENIA” p n p n xd2=0 xd0 napięcie polaryzujące napięcie polaryzujące
Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) Przy napięciu polaryzującym złącze w kierunku przewodzenia, o wartości równej wartości napięcia dyfuzyjnego w złączu, znika obszar zubożony w nośniki (obszar ładunku przestrzennego). Znika zatem również pole elektryczne, przeciwdziałające dyfuzji nośników większościowych
Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) SZEROKOŚĆ ZŁĄCZA – POLARYZACJA W KIERUNKU „ZAPOROWYM” p n p n xd3 xd0 napięcie polaryzujące napięcie polaryzujące
Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) Przy napięciu polaryzującym złącze w kierunku zaporowym, obszar zubożony w nośniki (obszar ładunku przestrzennego), poszerza się, co powoduje, że pole elektryczne, istniejące w tym obszarze przeciwdziała dyfuzji nośników większościowych
Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) SZEROKOŚĆ ZŁĄCZA – ZŁĄCZA „NIESYMETRYCZNE”
p n n+ P+ ND NA ND NA xd xd -xp xj +xn -xp xj +xn Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) SZEROKOŚĆ ZŁĄCZA – ZŁĄCZA „NIESYMETRYCZNE”
Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) SZEROKOŚĆ ZŁĄCZA – ZŁĄCZA „NIESYMETRYCZNE” N – koncentracja domieszki w „słabiej” domieszkowanej części złącza
Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) PRZEPŁYW PRĄDU PRZEZ ZŁĄCZE P-N
Elementy Elektroniczne Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, 44-100 Gliwice (email: Krzysztof.Waczynski@polsl.pl) PRZEPŁYW PRĄDU PRZEZ ZŁĄCZE P-N W p n JnD Jnu WC WC Wi WF WF Wi WV WV Jpu JpD x Obszar złącza