320 likes | 337 Views
Explore amortized time analysis of stretchy arrays in data structures lecture, covering stack operations and stack implementation details for efficient performance. Understand the benefits and complexities of using stretchy arrays over regular arrays through a mathematical perspective.
E N D
CSE 326: Data Structures Lists Lecture 4: Monday, Jan 13, 2003
Today • Finish amortized analysis of stretchy arrays • The List ADT Reading assignment for this week:Weiss, Chapter 3
E D C B A A F B C D E F Amortized Analysis Stack • Stack operations • push • pop • is_empty • Stack property: if x is on the stack before y is pushed, then x will be popped after y is popped • What is biggest problem with an array implementation?
int[] data; int maxsize; int top; Push(e){ if (top == maxsize){ temp = new int[2*maxsize]; for (i=0;i<maxsize;i++) temp[i]=data[i]; data = temp; maxsize = 2*maxsize; } data[++top] = e; } int pop() { return data[--top]; } Stretchy Stack Implementation Best case Push = O( ) Worst case Push = O( )
Stretchy Stack Amortized Analysis • Consider sequence of npush/pop operations • Amortized time = (T1 + T2 + . . . + Tn) / n • We compute this next push(e1) push(e2) pop() push(e3) push(e4) pop() . . . push(ek) time = T1 n time = Tn
Stretchy Stack Amortized Analysis • The length of the array increases like this: 1, 2, 4, 8, . . . , 2k, . . ., n • For each Ti we have one of the following • Ti = O(1) for pop(), and for some push(ei) • Ti = O(2k) for some push(ei) • Hence
Stretchy Stack Amortized Analysis Let’s compute this sum: And therefore: In an asymptotic sense, there is no overhead in using stretchy arraysrather than regular arrays!
Stretchy Stack Amortized Analysis • Careful ! We must be clever to get good amortized performance ! • Consider “smart pop”: int pop(){ int e = data[--top]; if (top <= maxsize/2){ maxsize = maxsize/2; temp = new int[maxsize]; for (i=0;i<maxsize;i++) temp[i]=data[i]; data = temp;} return e; }
Stretchy Stack Amortized Analysis • Take the sequence of 3n push/pop operations: push(e1) push(e2) ... push(en) pop() push(en) pop() push(en) pop() ... push(en) pop() n Suppose n = 2k+1 Hence amortized time is: T = ((1) + . . . + (1) + (n) + . . .+ (n))/3n = (n (1) + 2n (n))/3n = 2/3 (n) Hence T = (n) !!! 2n
Stretchy Stack Amortized Analysis • A more clever pop: int pop(){ int e = data[--top]; if (top <= maxsize/3){ maxsize = maxsize/2; temp = new int[maxsize]; for (i=0;i<top;i++) temp[i]=data[i]; data = temp;} return e; }
Stretchy Stack Amortized Analysis Some op’s take time=1, some take time > 1.Let’s look at consecutive op’s with time > 1. Four cases: Case 1 op1 op2 . . . opi push() . . . opj . . . push( ) opk . . . op1 op2 . . . opi pop() . . . opj . . . push( ) opk . . . Case 2 time > 1 time > 1 time = 1 at least k/2 push’s (why ?) time = 1 at least k/6 push’s (why ?) time = k > 1 time = k > 1
Stretchy Stack Amortized Analysis Some op’s take time=1, some take time > 1.Let’s look at consecutive op’s with time > 1. Four cases: Case 4 op1 op2 . . . opi push() . . . opj . . . pop( ) opm . . . Case 3 op1 op2 . . . opi pop() . . . opj . . . pop( ) opm . . . time > 1 time > 1 time = 1 at least k/2 pop’s (why ?) time = 1 at least k pop’s (why ?) time = k > 1 time = k > 1
Stretchy Stack Amortized Analysis Now compute the average time: n op1 op2 . . . opi . . . . . . opj . . . . . . opm . . . . . . opn time = 1 at least k1/6 time = 1 time = 1 time = k1 > 1 Total time: T 6nAmortized time:T/n = O(1) time = 1 at least k2/6 time = 1 time = 1 time = k2 > 1 at least k3/6 time = 1 time = 1 time = 1 time = k3 > 1 time = 1 . . . . . . time = 1 . . . . . .
Lists • We will describe them as ADTs = Abstract Data Types
Abstract vs. Concrete Data Types • Abstract Data Type (ADT) • Mathematical description of an object and the set of operations on the object • List, Stack, Tree, Heap, Graph, … • One ADT may specialize another ADT • One ADT may implement another ADT • Concrete Data Type • Implementation of an ADT using some set of primitive data types and operations of known complexity • Primitives: integers, arrays, pointers or references • Object-oriented programming languages (Java, C++) let you explicitly define new concrete data types that correspond to ADT’s.
List ADT ( A1 A2 … An-1 An ) length = n • Mathematical description: a sequence of items • Ai precedes Ai+1 for 1 i < n • Operations • First() = position • Value(position) = item • Next(position) = position • Length() = integer • Insert(item,position) • Delete(position) What other operations might be useful? Kth(integer)=item SetKth(item,integer) Find(item)=position
Specialization Hierarchy ListProperty: Sequence First()=pos Value(pos)=item Kth(integer)=itemNext(pos)=pos Length()=integer SetKth(item,integer)Insert(item,pos) Delete(pos) Find(item)=position StackProperty: LIFO Push(item)Pop()=itemIsEmpty()=true/false QueueProperty: FIFO Enqueue(item)Dequeue()=itemIsEmpty()=true/false VectorProperty: random access Kth(int) = itemSetKth(item,integer)
Implementation Hierarchy ListComplexity: Unspecified First()=pos Value(pos)=item Kth(integer)=itemNext(pos)=pos Length()=integer SetKth(item,integer)Insert(item,pos) Delete(pos) Find(item)=position Linked List(1) for: (n) for: Array(1) for: (n) for:
Specialization and Implementation Hierarchies List Stack Queue Vector Sorted Vector Linked List
Concrete Data Types List b c Linked List What’s an alternative implementation? Linked List using References nodeB.value = “b”;nodeC.value = “c”;list = nodeB;nodeB.next = nodeC
Concrete Data Types List b c Linked List Linked List using References Linked List using Arrays list = 4; nodeB.value = “b”;nodeC.value = “c”;list = nodeB;nodeB.next = nodeC
Linked Lists in C a b c struct node{ Object element; struct node * next; } Everything else is a pointer to a node! typedef stuct node * List; typedef struct node * Position; L
Linked Lists in Java – version 1 • References to objects are implicit pointers class ListNode{ Object element; ListNode next; } class List{ Listnode head; Listnode find(Object item) { Listnode n = head; while (n != null) { if (n.element == item) return n; } return null; }
Data Hiding • Good programming style hides internal details of an object from the rest of the program • Guarantees that data structure always works as expected – cannot easily be corrupted • Here, must make details of ListNode and List public • Type returned by find • For iterating through a list: ListNode n; for (n = mylist.head; n!= null; n = n.next){ v = n.element; do something on each v }
Iterators • Introduce a new public class to explicitly represent a position in a list • Then: public class LinkedListItr {ListNode current; public Object retrieve() { return current.element; } public void advance() { current = current.next; } public boolean pastEnd() { return current == NULL; } LinkedListItr i; for (i = mylist.first(); !i.pastEnd(); i.advance){ do something on each v.retrieve() }
Abstract Iterators • Iterators can also be defined for an array implementation of lists: • We can create an abstract iterator that works for both linked list and array implements of List public class ArrayListItr { Object [] data; integer current; public Object retrieve() { return data[current]; } public void advance() { current = current+1; }
Abstract Iterator abstract class ListItr { abstract Object retrieve(); abstract void advance(); … } class LinkedListItr extends ListItr { … } class ArrayListItr extends ListItr { … } • Why do this?
Array Implementation of Linked Lists 1 7 9 2 3 4 5 6 8 10 Data F O A R N R T Next 3 8 6 4 -1 10 5 First = 2 • How do we implement • Delete(position) ? • Insert(element, position)?
Free Cell Management 1 7 9 2 3 4 5 6 8 10 Data F O A R N R T Next 7 9 0 3 8 6 4 -1 10 5 First = 2 Free = 1 When an item is removed from the list, must “reclaim” the unused cell for later use Can use same array to manage a second list of unused cells
Memory Management • Keeping a free cell list is an example of a memory management strategy • How is memory managed in C? • C++? • Java?