1 / 9

Unit 2.6

Unit 2.6. Verifying Angle Relationships. Theorem 2-2. If two angles form a linear pair, then they are supplementary. Theorem 2-3. Congruence of angles is reflexive, symmetric and transitive. REFLEXIVE: <ABC = <ABC SYMMETRIC: If <ABC = <CDE, then <CDE = <ABC

grady-yang
Download Presentation

Unit 2.6

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Unit 2.6 Verifying Angle Relationships

  2. Theorem 2-2 • If two angles form a linear pair, then they are supplementary.

  3. Theorem 2-3 • Congruence of angles is reflexive, symmetric and transitive. REFLEXIVE: <ABC = <ABC SYMMETRIC: If <ABC = <CDE, then <CDE = <ABC TRANSITIVE: If <ABC = <CDE and <CDE = <FGH, then <ABC = <FGH

  4. Theorem 2-4 • Angles supplementary to the same angle or to congruent angles are congruent.

  5. Theorem 2-5 • Angles complementary to the same angle or to congruent angles are congruent.

  6. Theorem 2-6 • All right angles are congruent.

  7. Theorem 2-7 • Vertical Angles are congruent.

  8. Theorem 2-8 • Perpendicular lines intersect to form four right angles.

  9. NOW LETS LOOK AT SOME PROoFS

More Related