1 / 21

Correlation & Prediction REVIEW

Correlation & Prediction REVIEW. Correlation Bivariate Direct/Indirect Cause/Effect Strength of relationships (is + stronger than negative?) Coefficient of determination (r 2 ); Predicts what? Linear vs Curvilinear relationships. Table 5-2 Variable Classification. Independent Dependent

gray-boone
Download Presentation

Correlation & Prediction REVIEW

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Correlation & PredictionREVIEW • Correlation • Bivariate Direct/Indirect Cause/Effect • Strength of relationships (is + stronger than negative?) • Coefficient of determination (r2); Predicts what? • Linear vs Curvilinear relationships

  2. Table 5-2Variable Classification IndependentDependent Presumed cause Presumed effect The antecedent The consequence Manipulated/measured by researcher Outcome (measured) Predicted from Predicted to Predictor Criterion X Y

  3. What Analysis?

  4. Some Examples • Chi-SquareGender and knee injuries in collegiate basketball players • Independent t-testDifferences in girls and boys (independent groups; mutually exclusive) • Dependent t-testPre and Post measurement of same group or matched pairs (siblings) • One-Way ANOVADefensive ability (1, 2 or 3) and throwing distance (IV of >2 levels)

  5. Norm-Referenced Measurement HPER 3150 Dr. Ayers

  6. Topics for Discussion • Reliability (variance & PPM correlation support reliability & validity) Consistency Repeatability • Validity Truthfulness • Objectivity Inter-rater reliability

  7. Observed, Error, and True Scores Observed Score = True Score + Error Score ALL scores have true and error portions

  8. There is variation in observed, true & error scores • Error can be + or – (increase/decrease observed scores) • Error scores contribute LITTLE to observed variation • S2o = S2t + S2e

  9. ReliabilityTHIS IS HUGE!!!! Reliability is that proportion of observed score variance that is true score variance TIP: use algebra to move S2t to stand alone S2o = S2t + S2e

  10. Table 6-1Systolic Blood Pressure Recordings for 10 Subjects Subject Observed BP = True BP + Error BP 1 103 105 -2 2 117 115 +2 3 116 120 -4 4 123 125 -2 5 127 125 +2 6 125 125 0 7 135 125 +10 8 126 130 -4 9 133 135 -2 10 145 145 0 Sum (S) 1250 1250 0 Mean (M) 125.0 125.0 0 Variance (S2) 133.6 116.716.9 S 11.6 10.8 4.1

  11. Reliability Coefficients • Interclass Reliability • Correlates 2 trials • Intraclass Reliability • Correlates >2 trials

  12. Interclass Reliability (Pearson Product Moment) • Test Retest (administer test 2x & correlate scores) • See Excel document (Norm-ref msmt examples) • Time, fatigue, practice effect • Equivalence (create 2 “equivalent” test forms) • Odd/Even test items on a single test • Addresses most of the test/retest issues • Reduces test size 50% • Split Halves • Spearman-Brown prophecy formula

  13. Spearman Brown Prophecy Formula k = the number of items I WANT to estimate the reliability for divided by the number of items I HAVE reliability for

  14. Table 6-3Odd and Even Scores for 10 Subjects Subject Odd Even 1 12 13 2 9 11 3 10 8 4 9 6 5 11 8 6 7 10 7 9 9 8 12 10 9 5 4 10 8 7 Sum (S) 92 86 Mean 9.2 8.6 S 2.2 2.6 Variance (S2) 4.8 6.7 Assume a 30-item test rxx’ = .639 (low but test is only 15 items)

  15. Are these two trials consistent? Subject Trial 1 Trial 2 1 15 25 2 17 27 3 10 20 4 20 30 5 23 33 6 26 36 7 27 37 8 30 40 9 32 42 10 33 43 Sum (S) 233 333 Mean 23.3 33.3 S 7.7 7.7 Variance (S2) 59.1 59.1 All scores changed by 10 points If reliability= consistency, how can you calculate reliability considering a constant change in scores? rxx’ = 1.00

  16. Intraclass Reliability ANOVA ModelCronbach's alpha coefficient Alpha Coefficient K = # trials (different than in the Spearman-Brown prophecy formula)

  17. Intraclass (ANOVA) ReliabilitiesCommon terms you will encounter • Alpha Reliability • Kuder Richardson Formula 20 (KR20) (items scored 0/1) • Kuder-Richardson Formula 21 (KR21) • ANOVA reliabilities

  18. All are calculated the same: partition total variance in scores into PEOPLEtotal variance between participants (total or observed S2) TRIALS variance across trials (error S2) PEOPLE-BY-TRIALS not everyone performs equally differently across trials (error S2)

  19. Table 6-6Calculating the Alpha Coefficient Subject Trial 1 Trial 2 Trial 3 Total 1 3 5 3 11 2 2 2 2 6 3 6 5 3 14 4 5 3 5 13 5 3 4 4 11 SX 19 19 17 55 SX2 83 79 63 643 S22.70 1.70 1.30 9.50 K = # trials

  20. Calculating the Alpha Coefficient

  21. Index of Reliability The theoretical correlation between observed scores and true scores Square root of the reliability coefficient

More Related