1 / 37

Stratospheric Chemistry

Stratospheric Chemistry. Stratospheric Chemistry - Ozone. Solar Emission: 250 – 1000 um. UV Radiation:. UV-A 315- 400nm ~7% total solar flux UV-B 280-315nm ~1.5% total flux UV-C <280nm ~0.5% total solar flux. Ozone absorbs UV-C and partially absorbs UV-B region.

hallie
Download Presentation

Stratospheric Chemistry

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Stratospheric Chemistry

  2. Stratospheric Chemistry - Ozone Solar Emission: 250 – 1000 um UV Radiation: UV-A 315- 400nm ~7% total solar flux UV-B 280-315nm ~1.5% total flux UV-C <280nm ~0.5% total solar flux Ozone absorbs UV-C and partially absorbs UV-B region

  3. Ozone Damage to the Red Alder Tree

  4. Dobson units (DU) for the measurement of ozone 100 DU equivalent to 1mm thick layer of ozone at 0 oC and Po World Average ~ 300 DU Antarctic “Ozone Hole” < 150 DU Range 250 DU – 450 DU

  5. Ground Based Ozone Detection Systems Dobson Ozone Spectrometer (1920s)

  6. Stratospheric Ozone Lidar Trailer Equipiment (STROZ-LITE) Ozone Two Lasers (308 and 351nm): (light backscattered elastically, collected with a 30” telescope) Temperature: (from 351 nm backscatter, signal related to density) Aerosol: (records both elastically and inelastically scattered light…ratio gives Aerosol Scatter Ratio…~measure of aerosol conc.)

  7. STROZ-LITE Temperature and Aerosol Scattering Data

  8. Airborne Raman, Ozone, Temperature and Aerosol Lidar (AROTEL) Vertical profile of ozone between 12-30km Veritcal profile of temperature, 13 ~60km Vertical profile of aerosol scattering Aeosol depolarization at 532 nm Instrument: Transmitter: XeCl excimer laser (308nm) Nd-YAG laser (1064, 532, 355nm) Reciever: 16” Newton telescope

  9. Satellite Remote Sensing LIDAR Systems, Light Detection and Ranging Systems

  10. Satellite-Based Systems EOS Aura Spacecraft HIRDLS: High Resolution Dynamic Limb Sounder MLS: Microwave Limb Sounder TES: Tropospheric Emission Spectrometer OMI: Ozone Monitoring Instrument

  11. OMI Data Products OMI: Ozone Monitoring Instrument OMI Data Products

  12. OMI: Ozone Monitoring Instrument

  13. Oxygen-only Chemistry – formation and turnover of ozone First proposed by Chapman

  14. Chapman Reaction Sequence O2 + hn (l < 240 nm)  2 O +498.4kJ – E(hn) (slow) O + O2 + M  O3 + M -106.5kJ (fast) O3 + hn (l = 230-320nm)  O2* +O* 386.5kJ – E(hn) (fast) O + O3 2 O2 -391.9 kJ (slow)

  15. Catalytic Decomposition of Ozone X + O3 XO + O2 XO + O  X + O2 O + O3  2 O2 X = HOx NOx ClOx ~70% @ 50km ~70% @ 30km .H .OH HOO..NO .NO2 .Cl ClO.

  16. HOx Species Formation: O + H2O  2 .OH H2O + hn  .H + .OH Catalytic Decomposition of Ozone: .H + O3  .OH + O2.OH + O3 HOO. + O2 .OH + O  .H + O2HOO. + O  .OH + O2 O + O3  2 O2O + O3  2 O2

  17. NOx SpeciesfromN2O (~300 ppbv) Formation: < 30km N2O + O*  2NO >30km N2 + hn (l<126nm)  N* + N N + O2  NO + O Catalytic Decomposition of Ozone: NO + O3 NO2 + O2 NO2 + O  NO + O2 O + O3  2 O2

  18. ClOx Species Natural Source: CH3Cl Formed: CH3Cl + hn .CH3 + .Cl Removed: CH3Cl + .OH  .CH2Cl + H2O Catalytic Decomposition of Ozone .Cl + O3 ClO. + O2 ClO. + O  .Cl + O2 O + O3  2 O2

  19. Chlorofluorocarbons (CFCs) CFC-xyz x = # C atoms -1 y = # H atoms z = # F atoms +1 remainder Cl CFC-114 2 C, 0 H, 4 F ….. 2 Cl 114 + 90 = 204….. 2Cl CFCl2CF3 CF2ClCF2Cl CFC-114a CFC114b CFC-11 11 + 90 = 101 CFCl3 CFCl3 + hn (l<290)  .CFCl2 + .Cl

  20. Null Cycles: Holding Cycles: NO + O3 NO2 + O2NO3 + NO2 + M  N2O5 + M NO2 + hn  NO + O.NO2 + .OH + M  HNO3 + M O3 + hn  O2 + O .Cl + CH4  HCl + .CH3 NO2 + O3  NO3 + O2 ClO. + HOO.  HOCl + O2 NO3 + hn  NO2 + OHOO. + .NO2 + M  HO2NO2 + M O3 + hn  O2 + OClO. + .NO2 + M  ClONO2 + M

  21. Antarctica Ozone Chemistry Winter: HCl + ClONO2 Cl2 + HNO3 (on PSCs) H2O + ClONO2  HOCl + HNO3 (on PSCs) Spring: Cl2 + hn 2 .Cl HOCl + hn  ClOO. + .Cl

More Related