1 / 96

Illinois Institute of Technology PHYSICS 561

Illinois Institute of Technology PHYSICS 561. Radiation Biophysics Lecture 5: Survival Curves and Modifiers of Response Andrew Howard 17 June 2014. Looking forward. Be alert for changes in the posted assignments: I may add a few things

Download Presentation

Illinois Institute of Technology PHYSICS 561

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Illinois Institute of TechnologyPHYSICS 561 Radiation Biophysics Lecture 5: Survival Curves and Modifiers of Response Andrew Howard 17 June 2014 Survival Curves; Modifiers

  2. Looking forward • Be alert for changes in the posted assignments: I may add a few things • Midterm will cover chapters 1-7 and the bit of extra material on free radicals that we discussed last week; therefore, it will not include the material from today’s lecture Survival Curves; Modifiers

  3. Survival Curves • We discussed models for cell survival last time • We looked at various ln(S/S0) vs. dose models and the logic behind them • Today we’ll focus on the graphical implications and how we can look at the numbers • Then we’ll talk about cell cycles and other good solid cell-biology topics. • (Warning: I’m more of a biochemist than a cell biologist, so don’t expect high expertise in this later section!) Survival Curves; Modifiers

  4. Errata in Chapter 8 • Page 169, Paragraph 2, 1st sentence:Until the later 1950’s it was not possible to use … • Two sentences later:BacteroidesBacillus • Fig. 8.1, p. 173:The label that says Dq is pointing at the wrong thing:it should be pointing at the place where the dashed line crosses the (Surviving faction = 1.0) value. Survival Curves; Modifiers

  5. What Fig. 8.1 should have said n Dq = D0lnn = quasi-threshold Dose, Gy Surviving Fraction Slope = k = 1/D0 A B Survival Curves; Modifiers

  6. Shoulder of the Survival Curve • We recognize that with MTSH dose-response we have a region where the slope is close to zero. We describe that region as a shoulder: Survival Curves; Modifiers

  7. Slopes in the MTSH model • Remember that the MTSH model saysln(S/S0) = ln(1-(1-exp(-D/D0))n) • Because S/S0 = 1-(1-exp(-D/D0))n • So what is the slope of the S/S0 vs. D curve? • … and … what is the slope of the ln(S/S0) vs. D curve? • In particular, what is the slope’s behavior at low dose? • Answer: calculate dS/S0/ dD and d(ln(S/S0))/dD and investigate their behavior at or near D = 0. • Note: we’re looking here at the n>1 case. Survival Curves; Modifiers

  8. Slope investigation, part I • For S/S0 itself,d(S/S0)/dD = d/dD(1-(1-exp(-D/D0))n) • The 1 out front doesn’t affect the derivative: d(S/S0)/dD = -d/dD(1-exp(-D/D0))n) • We’ll do the rest of this calculation now based on the general formulas • dun/dx = nun-1du/dx • deu/dx = eudu/dx Survival Curves; Modifiers

  9. Arithmetic & Calculusof Survival Models • MTSH says S/S0 = 1 - (1-e -D/D0)n • What I want to investigate is the slope at low dose, I.e. for D << D0, • And at high dose, I.e. for D >> D0. • But are we interested in the slope of S/S0 vs. D or ln(S/S0) vs. D? • Both! • Slope = derivative with respect to D. So • Slope = d/dD(1 - (1-e -D/D0)n) = -d/dD(1-e -D/D0)n Survival Curves; Modifiers

  10. MTSH slope, continued • Recalling that dun/dx = nun-1du/dx, for n>1, • Slope = -n(1-e -D/D0)n-1 d/dD (1-e -D/D0)= -n(1-e -D/D0)n-1 [-d/dD(e -D/D0 )] • But we know deu/dx = eu du/dx,so d/dD(e -D/D0 ) = e -D/D0 (-1/D0) = -1/D0 e -D/D0 • Therefore Slope = -n(1-e -D/D0)n-1 (-)(-1/D0)e -D/D0 • i.e. Slope = (-n/D0)(1-e -D/D0)n-1e -D/D0 Survival Curves; Modifiers

  11. Slope at D << D0 • This formula for the slope is valid for all values of D,including D << D0 and D >> D0 • For small D, i.e. for D << D0,Slope is -n/D0 (1-e -0/D0)n-1e -0/D0= (-n/D0) (1-e0)n-1e-0; for n > 1 this is= (-n/D0)(1-1)n-11 = 0. Shazam. Survival Curves; Modifiers

  12. Slope of ln(S/S0) vs D • The behavior of the slope of the ln(S/S0) vs D curve is not much harder to determine. • Recall d lnu /dx = (1/u)du/dx. We apply this here: • d ln(S/S0) / dD = (1/(S/S0)) d(S/S0)/dD. • For very small D, S/S0 = 1,so d ln(S/S0) / dD = (1/1) * d(S/S0)/dD = d(S/S0)/dD . • But we’ve just shown that that derivative is zero, so d ln(S/S0) / dD = 0. Survival Curves; Modifiers

  13. High-dose case • We’ve covered the low-dose case. • What happens at high dose, i.e. D >> D0? • What we’d like to show is that the slope of lnS/S0 vs. D is -1/D0. Let’s see if we can do that. • Slope = d ln(S/S0) / dD = (1/(S/S0) d/dD(S/S0) • Thus slope =(1 - (1-e -D/D0)n-1)d/dD(1 - (1-e -D/D0)n) • For D >> D0, D/D0 is large and-D/D0 is a large negative number;therefore e-D/D0 is close to zero. Survival Curves; Modifiers

  14. High-dose case, continued • Slope = limD∞{(1 - (1-e -D/D0)n)-1(-n/D0)(1-0)n-1e-D/D0)} • That’s messy because the denominator and the numerator both go to zero. There are ways to do that using L’Hôpital’s rule, but there are simpler ways that don’t involve limits. • The trick is to recognize that we can do a binomial expansion • I’ve done that in the HTML notes • The result will be slope = -1/D0 and ln n is the Y intercept of the extrapolated curve Survival Curves; Modifiers

  15. What constitutes a high dose here? • The only scaling of the dose that occurs in the formula is the value of D0, so we would expect that we are in that high-dose regime provided that D >> D0. • In practice the approximation that the slope is -1/D0 is valid if D > 5 D0. Survival Curves; Modifiers

  16. Linear-Quadratic Model • This is simpler. ln(S/S0) = aD + bD2 • Therefore slope = d/dD (ln(S/S0)) = d/dD(aD + bD2) • Thus slope = a + 2bD. That’s a pretty simple form. • At low dose, |a| >> 2|b|D, so slope = a. • At high dose (what does that mean?) |a| << 2|b|D,so slope = 2bD. • What constitutes a high dose?Well, it’s a dose at which |a| << 2|b|D, so D >> |a / (2b| • Thus if dose >> |a / 2b|, then slope = 2bD. Survival Curves; Modifiers

  17. Implications of this model • At low dose slope = a is independent of dose but is nonzero; thus ln(S/S0) is roughly linear with dose. • At high dose slope = 2bD,i.e. it’s roughly quadratic. • How can we represent this easily?We discussed this last time:ln(S/S0) / D = a + bD, • so by plotting ln(S/S0) / D versus D, we can get a simple linear relationship. Survival Curves; Modifiers

  18. LQ: Plot of ln(S/S0) / D versus D ln(S/S0)/D By observation, both a and b are negative. a < 0 tells us that radiation harms cells; b < 0 is an observed fact. Thus the intercept is below the axis and the slope is negative. D Y-intercept = a Slope = b Survival Curves; Modifiers

  19. LQ graphical analysis: one step further We can read -a/b directly off an extrapolation of the plot: at D = Dz,ln(S/S0)/D = 0,a + bDz = 0,a = -bDz, Dz = -a / b.Note a < 0, b < 0,so -a/b < 0. ln(S/S0)/D Dz D Y-intercept = a Slope = b Survival Curves; Modifiers

  20. Where do linear and quadratic responses become equal? • At what dose does the linear response equal the quadratic response? • At that dose, aD = bD2, D = a/b • So the value we read off the X-intercept of the previous curve is simply the opposite of the dose value at which the two influences are equal. • We mentioned this last time, but we’re reminding you now Survival Curves; Modifiers

  21. How plausible is all this? • Model studies suggest reasons to think that ln(S/S0) = aD + bD2 is a good approach. • Much experimental data are consistent with the model • Some of these LQ approaches allow for time-dependence to be built in. Survival Curves; Modifiers

  22. LQ vs MTSH and thresholds Response • How does the question of comparing the LQ model to the MTSH model relate to the question of threshold doses? • A typical real-world question is a dose-response relationship for which the only reliable experimental results are obtained at high doses; at lower doses the confounding variables render the experiments uninformative. Dose Survival Curves; Modifiers

  23. Dose-Response in Epidemiology Human health effect • #2 is the linear non-threshold (LNT) model • Is #3 more realistic? • This has regulatory consequences! Experimental data Extrapolations Limit of reliable measurement #1 #2 #3 Threshold Baseline Dose Tolerable dose #3 Tolerable dose #2 Tolerable dose #1 Survival Curves; Modifiers

  24. Studying repair • We’ve been suggesting that LQ models and even some MTSH models are dependent on the idea that some DNA damage can be repaired accurately. • Let’s look for approaches to studying DNA damage that might provide a fuller understanding of the effects of repair. Survival Curves; Modifiers

  25. The Elkind-Sutton Experiment • Provides a way of probing repair functions in cells • Procedure: • Irradiate and establish survival curve(“conditioning dose”) • Take cells surviving at S=0.1 and subject them to further irradiation at varying time intervals after reaching S=0.1 • If repair is taking place, then the appearance of a curve similar to the original shoulder is indicative of full recovery Survival Curves; Modifiers

  26. Results Survival Curves; Modifiers

  27. Interpretation • If slope and implied n value are equivalent to the original curve, then repair is complete • Smaller n values indicate insufficient time has elapsed • n=1 implies repair has not begun Survival Curves; Modifiers

  28. Elkind-Sutton and LET • We might expect more complicated results if we vary the LET for the two dosing regimens • Low-LET first, high-LET second gives two lines of different slope, independent of the time interval • High-LET first, low-LET second gives line followed by usual Elkind-Sutton distribution Survival Curves; Modifiers

  29. Low-LET followed by High-LET Survival Curves; Modifiers

  30. High-LET, then Low-LET Survival Curves; Modifiers

  31. The Cell Cycle • Cells have a definite cycle over which specific activities occur. • Particular activities are limited to specific parts of the cycle • Howard and Pelc (1953) characterized four specific phases: • M (mitosis, i.e cell division) • G1 (growth prior to DNA replication) • S (synthesis, i.e DNA replication) • G2 (preparation for mitosis) Synthesis(S) Presynthetic(G1) Post-synthetic(G2) Mitosis(M) Survival Curves; Modifiers

  32. What happens in S phase? • DNA is replicated; thus, we have twice as much DNA at the end of S as at the beginning. • During mitosis the two duplexes of DNA can separate • One goes to one daughter cell, the other to the other Survival Curves; Modifiers

  33. How much time do these segments take? • Depends on the overall mitotic rate and the type of cell: • Cell Cycle Times in hours: Segment CHO HeLa M 1 1 G1 1 11 S 6 8 G2 3 4 ------------------------------------------ TOTAL 11 24 Survival Curves; Modifiers

  34. Pie charts of cycle percentages • The point is that different kinds of cells spend differing amounts of time in the various phases Survival Curves; Modifiers

  35. Phase Sensitivity • Many cells are much more sensitive to radiation in some parts of the cell cycle than they are in others. • Why? • Repair is more vigorous in some stages • Unrepaired damage has more opportunity to manifest itself as clonal alteration close to mitosis • Access of repair enzymes to damaged DNA is sometimes influenced by how organized the DNA is. Survival Curves; Modifiers

  36. What phases are sensitive? • In general, cells are radioresistant when they are synthesizing DNA. • Cells that are synthesizing DNA are taking up label;the time that they’re doing that is correlated with survival: 90 % of labeled cells 0.4 Surviving Fraction Surviving Fraction % of labeled cells 24 0 Time in Hours Survival Curves; Modifiers

  37. Survival Curves in Various Phases • See fig. 8.8: • Late S is least radiosensitive • Early S next least • G-1 somewhat sensitive • G-2 and M most radiosensitive • M and G2 curves are essentially straight lines (log-linear dose-response), suggesting that repair is unavailable or of little influence Survival Curves; Modifiers

  38. Figure 8.8, reimagined with LQ model Survival Curves; Modifiers

  39. Radiation-InducedCell Progression Delay • Note that various biochemical signals regulate progression from one phase of the cycle to another. • To study this, you need synchronized cells . . . • Sample study (Leeper, 1973): • CHO cells exposed to 1.5 Gy in mid-G1 experienced a delay of 0.5 h in cell division • 1.5 Gy in late S or early G2 caused a delay of 2-3 h • Dose-dependent: (4h for 3Gy, 6-7h for 6 Gy) Survival Curves; Modifiers

  40. Shape of the culture matters! • How the cells grow influences how much the cells’ progression is altered by radiation • Monolayers’ progression is altered less than cells in a multicellular spheroid geometry 0.53 hours per Gray 0.22 hours per Gray Survival Curves; Modifiers

  41. Is that such a big deal? • Probably not: • The cells in the spheroidal mass divide half as fast even in the absence of radiation, possibly due to contact inhibition. • Therefore it may simply be that the whole mitotic clock has been slowed down, including the clock as it’s been influenced by radiation. Survival Curves; Modifiers

  42. Causes for these effects • Why are cells more radiosensitive in M and G2? • Reduced availability of repair enzymes • Repackaged DNA is hard to repair • How is cell progression influenced by radiation? • Damage to protein kinases and cyclins involved in cellular checkpoints • Premature degradation of p21, maybe… • Sample 1994 study:Edgar et al, Genes Dev. 440: 52 (1994) Survival Curves; Modifiers

  43. Effectors of Radiation Sensitivity • Biological • Cells go through life cycles & are much more sensitive to radiation damage at some stages than at others • Chemical • Physical Survival Curves; Modifiers

  44. Assignment related to amino acids • 1. There are exactly twenty amino acids that serve as the building blocks for proteins in almost all organisms. The general formula for 19 of these 20 amino acids is +NH3-CHR-COO-, where R is any of 19 different side-chain groups. The simplest of these R groups is H, for which the amino acid is called glycine; the most complicated is a moiety known as indole, for which the amino acid is called tryptophan. Survival Curves; Modifiers

  45. Upcoming Problem 1, cont’d • Much of the chemistry that these R groups participate in in proteins is ionic in nature, involving charges or partial charges; but usually these ionic interactions involve pairs of electrons rather than unpaired electrons. An exception is the amino acid tyrosine, which can participate in free-radical (unpaired-electron) interactions. Draw a structure of the tyrosyl free radical and explain why it might have a reasonably long lifetime, as compared to a hydroxyl radical or some other short-lived free radical. Survival Curves; Modifiers

  46. Second upcoming problem • 2. Most biochemical oxidation-reduction reactions involve transfers of pairs of electrons and therefore do not involve free radical mechanisms. A sizeable minority, however, do involve free radicals. Which of the following biochemical oxidizing or reducing agents are capable of participating in single-electron (free-radical) reactions, and which are not? Explain briefly. You may need to look up the structures of some of these compounds. • (a) ferric iron, Fe3+ • (b) nicotinamide adenine dinucleotide, oxidized form (NAD) • (c) flavonamide mononucleotide (FMN)(also spelled flavin amide mononucleotide; it’s an instance of what are generally known as flavin prosthetic groups) Survival Curves; Modifiers

  47. Errata • Page 205, in the EXAMPLE:4.0 µM l-1 should be 4.0 µM, or 4.0 µmol l-1 • Page 206, last sentence:If the lesions produced by high LET radiation are predominantly of type II (irrepairable), then m-1 will be disappearingly small and no oxygen sensitization will be detectable. • Page 213, last paragraph: cysteine, not crysteine Survival Curves; Modifiers

  48. Cellular Life Cycles (review) Phases • Mitotic M (short) • Sensitive • Presynthetic G1 (variable) • Radiation causes 1/2 h delay here • Synthetic S (4 - 8 h) • DNA synthesis • Least sensitive • Postsynthetic G2 (usually short 1 - 2h) • Radiation causes 3 - 4 h delay here • End of G2 sensitive __________ Overall Process 14 h Survival Curves; Modifiers

  49. What happens in G1? • Routine cellular metabolism • Both buildup of new cellular structures and gathering energy to do so, i.e. both catabolism and anabolism: Metabolism as a whole consists of: • CatabolismAnabolism • Energy-producing Energy-requiring • Breakdown of complex Build-up of complexmolecules into simpler molecules from simplerones, producing ATP precursors, using ATP Survival Curves; Modifiers

  50. A mitotic cell Other organelles Nucleus(DNA location;cellular organization) Mitochondrion(energy metabolism) Mitotic Spindle Ribosomes(protein synthesis) Survival Curves; Modifiers

More Related