370 likes | 476 Views
EpiS3: a semantically interoperable social network for syndromic surveillance and disease control. Luciana Tricai Cavalini and Timothy Wayne Cook National Institute of Science and Technology – Medicine Assisted by Scientific Computing. Summary. The problem The current solution
E N D
EpiS3: a semantically interoperable social network for syndromic surveillance and disease control Luciana Tricai Cavalini and Timothy Wayne Cook National Institute of Science and Technology – Medicine Assisted by Scientific Computing
Summary • The problem • The current solution • Remaining challenges • A new approach • Implementation • Future steps
Syndromic Surveillance: The problem
Problem 1: Detecting Cases First cases detected Index case
Fever? Bleeding? Jaundice?
Syndromic Surveillance: The currentsolution
The Current Solution: Issues • Top-down data models • Risk of inaccurate or incomplete data • Hospital/clinic centered applications • No records from uncovered populations • Incipient Decision Support Systems (DSS) • Mostly academic projects in internal medicine
Syndromic Surveillance: Remainingissues
Remaining Questions • How to collect data in the most opportune moment? • At the point of care • In the household • How to get data with proper… • ...accuracy... • ...granularity... • ...that will allow implementation of useful DSS for syndromic surveillance?
How to get... Dr. Cool Your patient: Jane Updated her problem list on Apr 29, 2014 5:33pm - Fever: YES - Bleeding: YES - Location: Nose Suspicious case of Acute Febrile Hemorrhagic Syndrome What to do ...without creating another data silo?
Syndromic Surveillance: A new approach
Fever? Bleeding? Jaundice?
MedWeb 3.0 Plugin Suite Rabies prophylaxis app Hospital infection control app AFJHS app And so on… Bioterrorism app Poisonous animals app Minimalistic, XML-based MMD technology MLHIM-based implementation Multilevel Model-Driven Approach Harmonization
Epidemiological Surveillance Support System (EpiS3): implementation
Acute Febrile Jaundice Hemorrhagic Syndrome (AFJHS) App > 1 y/o Fever 0-3 wks Jaundice • > 1 y/o • Fever 0-3 wks • Bleeding signs • > 1 y/o • Fever 0-3 wks • Jaundice and Bleeding AFJS AFHS AFJHS Treat malaria Malaria blood smear test Positive Negative Evaluate current epidemiological profile of the territory Hepatitis Yellow Fever Leptospirosis Sepsis Typhoid Fever • Dengue • Sepsis • Meningococcemia • Typhoid Fever • Hantavirus • Other Arbovirosis Hepatitis Yellow Fever Leptospirosis Sepsis Typhoid Fever AFJHS AFJS AFHS
Reference Model Concept Constraint Definition
Concept Constraint Definition Generator (CCD-Gen) www.ccdgen.com
CCD Library on CCD-Gen www.ccdgen.com/ccdlib
AFJHS App: Sample Data Instances AFHSwithspontaneousbleeding
AFJHS App: Sample Data Instances AFHSwithtourniquettest positive
AFJHS App: Sample Data Instances AFJSwith mucosa jaundice
Already Implemented: AFHS 16 AFJHS simulated cases (all possible classifications) AFJHS AFJS • Spontaneous + mucosa • Spontaneous + skin • Spontaneous + both • Tourniquet + mucosa • Tourniquet + skin • Tourniquet + both • Malaria • Spontaneous bleeding • Tourniquet test + • Mucosa • Skin • Both • Age • Fever • Fever duration • No signs Negative + a R library that converts the XML data instances into R data frames
Epidemiological Surveillance Support System (EpiS3): Future steps
EpiS3: Future Steps • App User Interface • Desktop and mHealth versions • DSS Algorithms • Clinical evaluation • Messaging • Reporting • EpiInfo Form Builder for MLHIM data
Thank you! lutricav@lampada.uerj.br tim@mlhim.org google.com/+MedWeb30