600 likes | 751 Views
Intro. To GIS Lecture 9 Terrain Analysis April 24 th , 2013. Reminders. Please turn in your homework Final Project guidelines are available Two labs next week (Mon and Wed). REVIEW: Raster Data. Applications of neighborhood functions (spatial filters). Removing odd values Smooth the data
E N D
Reminders • Please turn in your homework • Final Project guidelines are available • Two labs next week (Mon and Wed)
Applications of neighborhood functions (spatial filters) • Removing odd values • Smooth the data • Edge detection • Edge sharpening • Spatial variability
How to represent the real world in 3D? • Data points are used to generate a continuous surface. In the below example, a color coded surface is generated from sample values
How to represent the real world in 3D? • Two ways to generate real world surfaces from point data (sample values) • Vector • raster • Whatever the method, what kind of data are available to represent the world?
How to represent the real world in 3D? • Ways of spatial sampling
Samples could represent any quantity (value) • Elevation • Climate data • Temperature • Precipitation • Wind • CO2 flux • Others • Ice thickness • Spatial samples (of some quantity) in a city • Gold concentrations • LiDAR data points
Elevation Data • Collected by several methods • Topographic survey (very accurate) • LiDAR data (pretty accurate) • Satellite radar (surprisingly accurate) • GPS survey (much less accurate) • Elevations (z-values) recorded at points
Surface Representation • Regardless of vector or raster: • Point elevations • Triangular Irregular Networks (TINs) • Contour lines • Digital Elevation Models (DEMs)
Vector representation (of surfaces) • Triangular Irregular Network (TIN) • TIN can be used to • Generate contour lines • Slope • Aspect
Triangular Irregular Network • Way of representing surfaces (vector) • Elevation points connected by lines to form triangles • Size of triangles may vary • Each face created by a triangle is called a facet
Triangular Irregular Network • The triangulation is based on the Delaunay triangulation • ADelaunay triangulationis a triangulation such that no sample (point) out of all samples is inside the circumcircle of any triangle. Delaunay triangulations maximize the minimum angle of all the angles of the triangles in the triangulation; they tend to avoid skinny triangles.
Delaunay triangulation Delaunay triangles: all satisfy the condition Delaunay NOT satisfied
More about TINs • No interpolation required, all elevation values are based on direct measurements • Visualized using hillshade for a 3D effect
More about TINs • Hillshade is one of the most common ways of displaying/visualizing TINs. Commonly Sun is shining from northwest (315deg) from 45deg above horizon. • Each facet will be assigned with a color based on its orientation • Products • Contour lines • Slope and aspect can be derived from
Raster Representation (of surfaces) • The most commonly used term for raster representation is Digital Elevation Model (DEM) • Any digital model for any other variable could be generated • For DEM, each cell has an elevation (z-value) • To generate DEM from sample points, interpolation is used to fill in between surveyed elevations – several methods to choose from
Interpolation • Linear • Polynomial • In GIS (to generate raster): • Nearest Neighbor • Inverse Distance Weighted (IDW) • Kriging • Splining
Interpolation • Comes from the word “inter” meaning between and “pole” which represent two sample points. So, you want to find a value between two points. • Extrapolation is finding a value for the outside of the two points
Linear interpolation • Assume that the value for an unknown location between two known points can be estimated based on a linear assumption
Polynomial Interpolation • Assume that the value for an unknown location between two known points can be estimated based on a non-linear assumption
Spatial Interpolation • Generating surface from points (samples) based upon: • Nearest Neighbor • Inverse Distance Weighted (IDW) • Kriging • Splining
Nearest-Neighbor • Uses elevations (or another quantity) from a specified number of nearby control points Sample with Known value Pixel (grid cell) with unknown value
Inverse Distance Weighted (IDW) • Spatial Autocorrelation • Near objects are more similar than far objects • IDW weights point values based on distance
Inverse Distance Weighted (IDW) • Estimating an unknown value for a pixel (p) by weighting the sample values based on their distance to (p) i=8 in this example j • In the above equation, n is the power. It is usually equals to 2, i.e., n=2. But you can pick n=1, n=1.5, etc.
IDW – Choosing the Power • Power setting influences interpolation results • Lower power results in smoother surfaces • Higher power results in rugged surface (it become more like ….?)
Kriging • Statistical regression method, whose process consists of two main components • Spatial autocorrelation (semivariance) • Some weighting scheme • Advanced interpolation function, can adapt to trends in elevation data
Krigingand Semivariogram • Semivarigram is a graph describing the semivariance (or simply variance) between pairs of samples at different distances (lags) • The idea comes from intuition: • Things that are spatially close are more correlated than those are far way (similar to IDW)
Generating Semivariogram • To generate a semivariogram, semivariance between pairs of points (for various distances/lags) are to be calculated
Kriging and Semivariogram • The first step in the kriging algorithm is to compute an average semivariogram for the entire dataset. This is done by going through each single point in the dataset and calculate semivariogram. Then the semivariogram are averaged. • The second step is to calculate the weights associated with each point
Spline Interpolation • Curves fit through control points • Interpolated values may exceed actual elevation values • Regularized vs. Tension options
OK… • Which one works better?
Evaluation of the generated surface • Independent samples must be preserved for accuracy assessment of the predicted (generated) surface. These points are called check points. • In other words, if you have 100 samples in the area, you’d use 90 to create the surface and 10 of them to evaluate how accurately the surface represents the actual world
Terrain Functions • Slope • Aspect • Hillshade • Curvature
Slope: How it is done! • Equations applied in neighborhoods for a focal cell
Watershed Delineation • How much land area drains to a specific point? • Can be delineated manually from a topo map
Watershed Basics • Basin/Catchment, Drainage Divide, Pour Points
Watershed Delineation • The key property of a watershed boundary is that it completely and uniquely defines the area from which the (surface) water drains to the watershed outlet.