1 / 42

Guerino Mazzola U & ETH Zürich     guerino@mazzola.ch      encyclospace        

Global Networks in Computer Science?. Guerino Mazzola U & ETH Zürich     guerino@mazzola.ch      www.encyclospace.org        . Motivation Local Networks Global Networks Diagram Logic. Motivation Local Networks Global Networks Diagram Logic.

ian-chavez
Download Presentation

Guerino Mazzola U & ETH Zürich     guerino@mazzola.ch      encyclospace        

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Global Networks in Computer Science? Guerino Mazzola U & ETH Zürich     guerino@mazzola.ch      www.encyclospace.org        

  2. Motivation • Local Networks • Global Networks • Diagram Logic

  3. Motivation • Local Networks • Global Networks • Diagram Logic

  4. Course by Harald Gall: Soft-Summer-Seminar 31.8./1.9. 2004 SW-Architekturen/Evolution „Klassifikation von Netzwerken...“

  5. Transformational Theory, K-nets (Lewin et al.) sets of notes Perspectives of New Music (2006) Guerino Mazzola & Moreno Andreatta: From a Categorical Point of View: K-nets as Limit Denotators

  6. U T — torus T compact Open set U not compact T  U  manifolds = global objects in differential geometry

  7. Are there global networks?

  8. Motivation • Local Networks • Global Networks • Diagram Logic

  9. h h‘  = A V E = B W d v t t‘ w u q x = t(a) c a b x y = h(a) a y Digraph = category of digraphs (= quivers, diagram schemes, etc.)  Digraph(,E)

  10. Dllr Di allr i Dilq ailq Dl l Dlip alip Dijt aijt  D Djlk ajlk j Dj Djms ajms C m Dm Diagram in a category C = digraph morphismD:   C • Di = objects in C • Dijt = morphisms in C

  11. Examples: • diagram of sets C =Set • diagram of topological spaces C =Top • diagram of real vector spaces C =Lin— • diagram of automata C = Automata • etc.

  12. C@ @ @C • Yoneda embedding • Let C@ = category of contravariant functors (= presheaves) F: C Set • Have Yoneda embedding functor @:C C@ • @X: C Set: A ~> A@X = C(A, X) (@X = representable presheaf) C

  13. F x A h F G    A B x y address change • Category ∫C of C-addressed points • Objects of ∫C • x: @A  F, F = presheaf in C@~xF(A), write x: A  F A = address, F = space of x • Morphisms of ∫C • x: A  F, y: B  G h/: x  y

  14. hllr/llr hllr/llr xi: Ai Fi xi: A F hilq/ilq hilq/ilq xl: Al Fl xl: AF hlip/lip hlip/lip hijt/ijt hijt/ijt hijt/ijt  hjlk/jlk hjlk/jlk D xj: Aj Fj xj: AF C@ hjms/jms hjms/jms xm: Am Fm xm: AF coordinateofx Local network in C= diagram x of C-addressed points x:   ∫C xlim(D) x is flat if all addresses and spaces coincide.

  15. Ÿ12 Ÿ12 Ÿ12 2 3 T4/Id 7 3 Ÿ12 Ÿ12 0 0 4 7 T11.5/Id T11.-1/Id 0 0 2 4 T2/Id Example 1: K-nets of pitch classesC = Ab abelian groups + affine maps

  16. 2Ÿ12 2Ÿ12 2T4/Id {2,7,8} {3,4,10} 0 0 2T11.5/Id 2T11.-1/Id 0 0 {1,2,7} {3,4,9} 2T2/Id 2Ÿ12 2Ÿ12 Example 2: K-nets of chordsC = Ab

  17. Ÿ12 Ÿ12 Id/T11.-1 Ks s Ÿ12 Ÿ12 Ÿ11 Ÿ11 T11.-1/Id T11.-1/Id Ÿ11 Ÿ11 s Us UKs Id/T11.-1 Example 3: K-nets of dodecaphonic seriesC = Ab

  18. 2004 Example 4: Neural Networks

  19. h —n —m x y Ÿ Ÿ +? Neural Networks C = Set address = Ÿ Points x: Ÿ —nat this address are time series x = (x(t))t of vectors in —n.They describe input and output for neural networks. Dn = Ÿ @ —n h/+? : x  y y(t) = h(x(t-1))

  20. D h Dn Dn D Dn p1 p1 p12 p3 Dn Dn Dn Dn D D D D Dn pi Id/+? Id/+? p2 o a ?,? pn D

  21. x1 h p1 p1 p12 p3 xi pi Id/+?  Id/+? ?,? p2 a o pn xn (+w,+x, a+w,+x) w o(a+w,+x) (w, x) +w,+x a+w,+x x (+w,+x)

  22. 2004    (e) = f 2 Example 5: Local Networks of Automata • C = AutomataSet S of states, alphabet A • Objects: (e, M: S  A 2S) • Morphisms: h = (, ): (e, M: S  A 2S)  (f, N: T  B 2T) S  A 2S T  B 2T

  23. hllr/Id si: A  Mi hilq/Id sl: A Ml hlip/Id hijt/Id hjlk/Id sj: A Mj hjms/Id sm: A Mm addressA = (0, M: {0,1}   2{0,1}) points x: A (e, M: S  A 2S) ~ states s in S local network ofA-addressed pointsIdA = address change~ network of states

  24. Class@ virtual classes objective classes Example 6: Networks of OO Instances • C = Class classes and instances of a OO language • Objects: classes and one special address: I = „the instance“ (corresponds to final object 1) • Morphisms: s: K L superclass v: K F field m: K M method (without arguments) i: I K instance • I@K = {instances of class K } @Class

  25. m Id @M F m(i,j) pK pL @K @L (i,j) I I i j Cartesian product  multiple inheritance Instance method in two variables: F = @K  @L (i,j):I  F, m: F  @M

  26. xllr xi xilq xl xlip xijt di x = xjlk xj yf(i) yrrh yf(i)rq xjms yrf(i) p yr xm yf(i)st ysrw ys y= Morphisms of local networks x:   ∫C, y: E  ∫C f: x y category LC f:   E for every vertex i of , there is a morphism di: xi yf(i) subcategory FC Flat morphism: x, y flat and di = const. = h/

  27. Special cases • identity morphism Idx: x  x • isomorphisms f: x  y there is g: y  x with g∞f = Idxund f∞g = Idy, write x y. • local subnetworksLocal network y: E  ∫C , f:   E subdigraph, f: y  y embedding morphism.

  28. Motivation • Local Networks • Global Networks • Diagram Logic

  29. s r rs atlas

  30. chart yi i i l  yl l r j yj j ym m m cartes. rs xi i yi l xl yl xj j s  yj i isomorphism of local networks l xi xl j xj chart

  31. Examples • Local networks are global networks with one chart. • Interpretations: let y: E  ∫C be a local network and letI = (i) be a covering by subdigraphs i  E. Build the corresponding subnetworks xi = y i. Together with the identity on the chart overlaps, this defines a global network yI, called interpretation of y.Interpretations are interesting for the classification of networks by coverings of a given type of charts!Visualization via the nerve of the covering. • Locally flat global networks have flat charts and local glueing data.

  32. Morphisms of global networksx, y over category C f: x  y= morphisms of their digraphs, which induce morphisms of local networks. • Category GC of global networks over C. • SubcategoryLfCof locally flat networks + locally flat morphisms. • A global networkis interpretable, if it is isomorphic to an interpretation. Open problem: Under what condition are therenon-interpretable global networks? LfC  X  GC

  33. 4 6 x |x| ~> 4 3 6 5 2 3 5 1 2 1 Theorem Given address A in C, we have a verification functor |?|: ALfCredAGlob Corollary There are non-interpretable global networks in ALfCred COLLOQUIUM ON MATHEMATHICAL MUSIC THEORY H. Fripertinger, L. Reich (Eds.) Grazer Math. Ber., ISSN 1016–7692 Bericht Nr. 347 (2005), Guerino Mazzola: Local and Global Limit Denotators and the Classification of Global Compositions

  34. |x| 4 6 4 1* 5 6 2 4 c d 3 b a 5 2 1 3 2* 6 5 3 1

  35. Dendritic transformations Karl Pribram

  36. Motivation • Local Networks • Global Networks • Diagram Logic

  37. 1 = Alexander Grothendieck The category Digraph is a topos D  E D+E DE 0 = Ø

  38.  = v w x y T In particular:The set Sub(D) of subdigraphsof a digraph Dis a Heyting algebra: have „digraph logic“. Ergo: Global networks, ANNs, Klumpenhouwer-nets, and local/global gestures, enable logicaloperators (, , ,) Subobject classifier

  39. Heyting logic on set Sub(y) of subnetworks of y h, k  Sub(y)h  k := h  kh  k := h  kh  k (complicated)  h := h  Ø tertium datur: h ≤  h u: y1  y2Sub(u): Sub(y2)  Sub(y1) homomorphism of Heyting algebras = contravariant functor Sub: LC Heyting Sub: GC Heyting complexes

  40. c b IV V d a III II VI VII I e g f C-major network of degrees y =3.x + 7

  41. V IV I VI I  =

  42. Describe global ANNs. • Can we interpret the dendritic transformations in the theory of Karl Pribram as being glueing operations of charts for global ANNs? • What is the gain in the construction of global ANNs? Is there any proper „global“ thinking in such a model? • What can be described in OO architectures by global networks, that local networks cannot? • Was would global SW-engineering/programming mean? How global are VM architectures?

More Related