440 likes | 457 Views
Matroid theory explores the properties and applications of matroids, abstract mathematical structures that generalize concepts like spanning trees in graph theory. Discover the exchange property, network coding, and algorithms related to matroids. Dive into matroid intersection, explore computational lower bounds, and learn about communication complexity in rank computation. This comprehensive guide delves into the complexities and challenges posed by matroids, offering insights into optimization and problem-solving techniques.
E N D
Query Lower Boundsfor Matroidsvia Group Representations Nick Harvey
Matroids • Definition A matroid is a pair (S,B ) where B ⊂2S s.t. Example: B = { spanning trees of graph G } • Sets in B are called bases • Rank of matroid is |A| for any A∈B Exchange Property Let A and B∈B a∈A\B, b∈B\A s.t. B+a-b∈B
b1 b2 t s b1⊕b2 b1⊕b2 b1⊕b2 Matroids • Definition A matroid is a pair (S,B ) where B ⊂2S s.t. Example: B = { spanning trees of graph G } • Applications • Generalize Graph Problems • Approximation Algorithms • Network Coding Exchange Property Let A and B∈B a∈A\B, b∈B\A s.t. B+a-b∈B
Multicast Network Coding Source b a • Goal: Multicast sourcesinks at maximum rate • Algorithm: Can construct optimal solution in PFlow: [Jaggi et al. ’05],Matroids: [H., Karger, Murota ’05] a b a+b a b a+b a+b Sinks
Reversibility of Network Codes sb sa Sources a b G a b a+b a+b a+b ta Sinks tb
Reversibility of Network Codes tb ta Sinks a+b a+b Grev a b a+b b a sa Sources sb • Flow: G feasible Grev feasible • Coding: feasible G s.t. Grevnot feasible[Dougherty, Zeger ’06]
Reversibility of Network Codes [Dougherty, Zeger ’06] Constructed from Fano andnon-Fano matroids
Discrete Optimization Problems • Matroid IntersectionGiven matroids M1=(S,B 1) and M2=(S,B2),is B 1⋂B 2=∅? NetworkFlow SubmodularFlow MinimumSpanningTree SubmodularFunctionMinimization MatroidIntersection MatroidIntersection BipartiteMatching Spanning TreePacking MatroidGreedyAlgorithm Non-Bip.Matching MatroidMatching Min-costArboresence
Matroid Intersection Algorithms Unweighted n = # elements r = rank Linear Matroids Weighted W = max weight Linear Matroids
Are these algorithms optimal? Unweighted n = # elements r = rank Linear Matroids Weighted W = max weight Linear Matroids
Computational Lower Bounds • Strong lower bounds in unrestricted computational models are beyond our reach • 5n - o(n) is best-known lower bound on circuit sizefor an explicit boolean function. [Iwama et al. ’05] • We believe 3SAT requires 2(n) time, butbest-known result is (n). • A super-linear lower bound for anynatural problem in P is hopeless. Data Algorithm
B Data Algorithm In Queries Out Black Box Query Lower Bounds • Strong lower bounds can be proven inconcrete computational models • Sorting in comparison model • Monotone graph properties[Rivest-Vuillemin ’76] • Volume of convex body • Deterministic[Elekes ’86] • Randomized[Rademacher-Vempala ’06] • Our work • Matroid intersection,Submodular Function Minimization
Query Model for Matroids(Independence Oracle) • Example: if B = { spanning trees of graph G },then query asks if T is an acyclic subgraph of G T⊆S Algorithm In Matroid(S,B) “Yes” if B∈Bs.t. T⊆B “No” otherwise Out
Matroid Intersection Complexity O(nr2) queries[Lawler ’75] Algorithms Are (nr2) queries necessary and sufficientto solve matroid intersection? D. J. A. Welsh, “Matroid Theory”, 1976.
Matroid Intersection Complexity O(nr2) queries[Lawler ’75] O(nr1.5) queries[Cunningham ’86] Algorithms No Are (nr2) queries necessary and sufficientto solve matroid intersection? D. J. A. Welsh, “Matroid Theory”, 1976. Can one prove any non-trivial lower boundon # queries to solve matroid intersection?
Matroid Intersection Complexity O(nr2) queries[Lawler ’75] O(nr1.5) queries[Cunningham ’86] Algorithms 2n Cunningham UB Trivial LB n # queries 0 0 n/2 n Rank r
Matroid Intersection Complexity O(nr1.5) queries[Cunningham ’86] Algorithms 2n Cunningham UB Trivial LB n Via Dual Matroids # queries 0 0 n/2 n Rank r
Matroid Intersection Complexity O(nr1.5) queries[Cunningham ’86] Algorithms Optimal UB? 2n Cunningham UB Trivial LB n Via Dual Matroids # queries 0 0 n/2 n Rank r
Matroid Intersection Complexity O(nr1.5) queries[Cunningham ’86] Algorithms Optimal UB? 2n Cunningham UB 1.58n Trivial LB n Via Dual Matroids # queries New LB [Harvey ’08] 0 0 n/2 n Rank r
Lower Bound [Harvey ’08] • A family Mof matroids, each of rank n/2 • # oracle queries for any deterministic algorithm on inputs from M is: (log2 3) n - o(n) > 1.58n CommunicationComplexity RankComputation Hard Instances M= Alice Bob
Hard InstancesBipartite Matching in Almost-2-Regular Graphs 1 Four verticeshave degree 1 3 2 4 • Is there a perfect matching?
Hard InstancesBipartite Matching in Almost-2-Regular Graphs 1 Four verticeshave degree 1 3 2 4 • Is there a perfect matching? • No: if path from 1 to 2 • Yes: otherwise
Permutation Formulation • Alice given ∈Sn and Bob given ∈Sn • In-Same-Cycle Problem:Are elements 1 and 2 in the same cycleof composition -1º? 1 1’ Permutation 2 2’ Permutation-1 3 3’ Elements 1 and 2are not in the same cycle 4 4’ 5 5’ 6 6’
if -1 º ∈G 1 otherwise 0 Main Result: rank C= (Moreover, it’s diagonalizable, all eigenvalues are integers, and they can be explicitly computed.) LB from Rank Computation • Let C be a matrix with rows and columnsindexed by permutations in Sn C, = where G= { : 1 & 2 are in the same cycle of } • C is adjacency matrix of Cayley graphfor Sn with generators G Corollary: # queries log rank C =(log2 3)n - o(n).
Main ProofA Tour of Algebraic Combinatorics • Step 0: Young Tableaux • Step 1: Decomposing G • Step 2: Decomposing C • Step 3: Block diagonalizing R • Step 4: Diagonalizing Xi • Wrap-up 3 7 2 1 4 5 6 G= {(1,2)} ×X3×X4 … ×Xn
Young Diagrams Row i has i boxes 12…k>0 # boxes = n = ∑ii • Young diagram of shape =(1,2,...,k) • Standard Young Tableau of shape • Main Result: rank C =# of SYT with n boxes such that 3 1 Place numbers {1,..,n} in boxes Rows increase → Columns increase ↓ 1 2 6 8 3 5 9 4 7 10 11 (and some other minor conditions)
Main Proof • Step 0: Young Tableaux • Step 1: Decomposing G • Step 2: Decomposing C • Step 3: Block diagonalizing R • Step 4: Diagonalizing Xi • Wrap-up 3 7 2 1 4 5 6 G= {(1,2)} ×X3×X4 … ×Xn
3 2 1 5 4 ˜ ˜ ˜ ˜ 6 Decomposing Sn • Claim: ∈Sn = ◦ (n,-1(n)), where ∈Sn-1 • Example: Let∈S6 be • Then ◦(7, 3)∈S7 is 3 7 2 1 4 5 6
˜ ˜ Decomposing Sn • Claim: ∈Sn = ◦ (n,-1(n)), where ∈Sn-1 • Restatement: Let Xi = { (j,i) : 1ji }.Then Sn = X2× … ×Xn. = (2,2) ◦ (1,3) ◦ (2,4) ◦(3,5) ◦ (5,6) ◦ (3,7) 3 7 2 1 5 4 6
DecomposingG • Let G = { : 1 & 2 are in the same cycle } • Claim: Let Xi = { (j,i) : 1ji }.Then G = {(1,2)} × X3 × X4… ×Xn. = (1,2) ◦ (1,3) ◦ (4,4) ◦(2,5) ◦ (5,6) ◦ (3,7) 3 7 2 1 4 5 6 1 & 2 remain in the same cycle
Main Proof • Step 0: Young Tableaux • Step 1: Decomposing G • Step 2: Decomposing C • Step 3: Block diagonalizing R • Step 4: Diagonalizing Xi • Wrap-up G = {(1,2)}×X3×X4 …×Xn 3 7 2 1 4 5 6
if -1 º ∈G if -1 º = 1 1 otherwise otherwise 0 0 Decomposing CRegular Representation • Recall:C is defined • C, = • Definition: R() is defined • R(),= • Thus:C = ∑∈GR()
Main Proof • Step 0: Young Tableaux • Step 1: Decomposing G • Step 2: Decomposing C • Step 3: Block diagonalizing R • Step 4: Diagonalizing Xi • Wrap-up G = {(1,2)}×X3×X4 …×Xn 3 7 2 1 4 5 6 C = ∑∈G R()
Decomposing R“Fourier Transform” change-of-basis matrix B block-diagonalizing R() YoungTableaux R() BR()B-1 1 1 1 1 1 ′ 1 1 1 1 ′′ IrreducibleRepresentations
Main Proof • Step 0: Young Tableaux • Step 1: Decomposing G • Step 2: Decomposing C • Step 3: Block diagonalizing R • Step 4: Diagonalizing Xi • Wrap-up G = {(1,2)}×X3×X4 …×Xn 3 7 2 1 4 5 6 C = ∑∈G R()
Diagonalizing XiJucys-Murphy Elements • Let Xi = {(j,i): 1ji } • Let Y(Xi) = ∑∈XiBR()B-1,restricted to irreducible block R() YoungTableaux BR()B-1 ′ ′′
Diagonalizing XiJucys-Murphy Elements • Let Xi = {(j,i): 1ji } • Let Y(Xi) = ∑∈XiBR()B-1,restricted to irreducible block ∑∈XiR() YoungTableaux ∑∈XiBR()B-1 ′ Y(Xi) ′′
Diagonalizing XiJucys-Murphy Elements • Let Xi = {(j,i): 1ji } • Let Y(Xi) = ∑∈XiBR()B-1,restricted to irreducible block • Fact: Y(Xi) is diagonal (and entries known) ∑∈XiR() YoungTableaux ∑∈XiBR()B-1 ′ Y(Xi) ′′
Diagonalizing XiJucys-Murphy Elements • Let Xi = {(j,i): 1ji } • Let Y(Xi) = ∑∈XiBR()B-1,restricted to irreducible block • Fact: Y(Xi) is diagonal, and entry Y(Xi)tj,tjis c-r+1, where i is in row r and col c of tj. • Let Xi = {(j,i): 1ji } • Let Y(Xi) = ∑∈XiBR()B-1,restricted to irreducible block • Fact: Y(Xi) is diagonal (and entries known) Content Value YoungTableau t1 t2 t3 t1 Y(X4) = t2 1 2 3 1 2 4 1 3 4 SYT 4 3 2 t3 t1 t2 t3
Diagonalizing XiJucys-Murphy Elements • Let Xi = {(j,i): 1ji } • Let Y(Xi) = ∑∈XiBR()B-1,restricted to irreducible block • Fact: Y(Xi) is diagonal, and entry Y(Xi)tj,tjis c-r+1, where i is in row r and col c of tj. • Let Xi = {(j,i): 1ji } • Let Y(Xi) = ∑∈XiBR()B,restricted to irreducible block • Fact: Y(Xi) is diagonal (and entries known) Content Value YoungTableau t1 t2 t3 t1 Y(X4) = t2 1 2 3 1 2 4 1 3 4 SYT 4 3 2 t3 t1 t2 t3
Main Proof • Step 0: Young Tableaux • Step 1: Decomposing G • Step 2: Decomposing C • Step 3: Block diagonalizing R • Step 4: Diagonalizing Xi • Wrap-up G = {(1,2)}×X3×X4 …×Xn 3 7 2 1 4 5 6 C = ∑∈G R()
Wrap-upDiagonalizing C Y({(1,2)})∙Y(X3) … Y(Xn) is diagonal Y({(1,2)}×X3×…×Xn) is diagonal Y(G ) is diagonal ∑∈GBR()B-1 is diagonal BCB-1 is diagonal (Step 4) (homomorphism) (Step 1) (Step 3) (Step 2)
Wrap-upWhat are eigenvalues of C? Y(G )tj,tj 0 Y(Xi)tj,tj 0 i3 If i3 is in row c and col r of tj, then c-r+10 rank C = # SYT with 3 1 (and 2 below 1,...) Y(G )=Y({(1,2)}×X3×…×Xn) Content Value Content Values SYT tj c-r+1 1 2 3 4 1 0 No i3 cango here 0 1 2 0 2 0 -1 0 1 0 0 3 1 -2 1 0 0
Main Proof • Step 0: Young Tableaux • Step 1: Decomposing G • Step 2: Decomposing C • Step 3: Block diagonalizing R • Step 4: Diagonalizing Xi • Wrap-up G = {(1,2)}×X3×X4 …×Xn 3 7 2 1 4 5 6 C = ∑∈G R() QED