1 / 90

10/31/2019

Institute of Food and Agricultural Sciences (IFAS) . Biogeochemistry of Wetlands Science and Applications. SULFUR. Wetland Biogeochemistry Laboratory Soil and Water Science Department University of Florida. Instructor : Patrick Inglett pinglett@ufl.edu. 10/31/2019. 10/31/2019.

inari
Download Presentation

10/31/2019

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Institute of Food and Agricultural Sciences (IFAS) Biogeochemistry of Wetlands Science and Applications SULFUR Wetland Biogeochemistry Laboratory Soil and Water Science Department University of Florida Instructor : Patrick Inglett pinglett@ufl.edu 10/31/2019 10/31/2019 WBL 1 1 10/31/2019 P.W. Inglett WBL 1

  2. Sulfur • Introduction • S Forms, Distribution, Importance • Basic processes of S Cycles • Examples of current research • Examples of applications • Key points learned P.W. Inglett

  3. Sulfur Learning Objectives • Identify the forms of S in wetlands • Understand the importance of S in wetlands/global processes • Define the major S processes/transformations • Understand the importance of microbial activity in S transformations • Understand the potential regulators of S processes • See the application of S cycle principles to understanding natural and man-made ecosystems P.W. Inglett

  4. Sources of Sulfur • Sulfur is a ubiquitous element. • Various sulfur compounds are present in: • The atmosphere • Minerals • Soils • Plant tissue • Animal tissue • Microbial biomass • Sediment P.W. Inglett

  5. Reservoirs of Sulfur • Atmosphere 4.8 x 109 kg • Lithosphere 24.3 x 1018 kg • Hydrosphere • Sea 1.3 x 1018 kg • Freshwater 3.0 x 1012 kg • Pedosphere • Soil 2.6 x 1014 kg • Soil Organic matter 0.1 x 1014 kg • Biosphere 8.0 x 1012 kg P.W. Inglett

  6. O Thioester R1-C~S-R2 General Forms of Sulfur in the Environment • Organic S in plant, animal, and microbial tissue (as essential components of amino acids and proteins) • Organic sulfur primarily in soil and sediments as humic material (naturally occurring soil and sediment organic matter) Methionine HS-CH2- Cysteine H3C-S-CH2-CH2- P.W. Inglett

  7. General Forms of Sulfur in the Environment • Gaseous S compounds (SO2, H2S, DMSO, DMS) • Oxidized Inorganic S (sulfate, SO42-, is the primary compound). Seawater contains about 2,700 mg/L (ppm) of sulfate • Reduced Inorganic S (elemental sulfur, So, and sulfide, S2-) P.W. Inglett

  8. General Forms of Sulfur in the Environment • Minerals Galena (PbS2) Gypsum (CaSO4) Jarosite(Fe2S) Barite (BaSO4) Pyrite (FeS2) • Fossil Fuels • Petroleum (0.1-10%) • Coal (1-20%) P.W. Inglett

  9. Oxidation states of selected sulfur compounds Organic S (R-SH) -2 Sulfide (S2-) -2 Elemental S (S0) 0 Sulfur dioxide (SO2) +4 Sulfite (SO3-2) +4 Sulfate (SO42-) +6 P.W. Inglett

  10. Global Sulfur Cycle P.W. Inglett

  11. Sulfur Cycling Processes 1. Dissimilatory sulfate reduction 2. Assimilatory sulfate reduction 3. Desulfurylation 4. Sulfide oxidation 5. Sulfur oxidation 6. Dissimilatory So reduction P.W. Inglett

  12. Sulfur Cycle So 4 5 Aerobic SH groups of protein 3 2 Anaerobic SO42- 1 S2- Aerobic 2 3 Anaerobic SH groups of protein 5 4 6 So P.W. Inglett

  13. Distribution of sulfur in soils Organic sulfur [93%] Carbon-bonded sulfur (cysteine and methionine) 41% Non-carbon-bonded sulfur (ester sulfates) 52% Inorganic sulfur [7%] Adsorbed + soluble sulfates 6% Inorganic compounds less oxidized than sulfates and reduced sulfur compounds (e.g. sulfides) 1% P.W. Inglett

  14. Organic Sulfur Forms 20 Freshwater 15 Brackish 10 Salt Sulfur, g/kg 5 0 Ester C-S Total Organic Geochemistry vol. 18, no. 4, pp. 489-500, 1992 P.W. Inglett

  15. Inorganic Sulfur Forms 4 400 Freshwater 3 300 Brackish 2 200 Sulfur, g/kg Salt Sulfur, mg/kg 1 100 0 0 FeS So FeS2 HCl Krairapanond et al. 1992. Organic Geochemistry 18: 489-500. P.W. Inglett

  16. R - S-H2 + H2O R-OH+ H2S Sulfohydrolase Thiol Organic S Hydrolysis P.W. Inglett

  17. Sulfur – Organism Groups • Assimilatory Sulfate Reduction • Bacteria, fungi, algae, and plants • Dissimilatory Sulfate Reduction • Hetrerotrophs • Desulfovibrio, Desulfotomaculum, Desulfobacter, Desulfuromonas • Sulfide Oxidation • Phototrophs: Chlorobium, Chromatium • Chemolithoautotrophs: Thiobacillus, Beggiatoa P.W. Inglett

  18. Sulfate Reducing Bacteria: SRB(habitats) Desulfovibrio - found in water-logged soils. Desulfotomaculum - spoilage of canned foods. Desulfomonas - found in intestines. Archaeglobus - a thermophilic Archea whose optimal growth temperature is 83oC. P.W. Inglett

  19. P.W. Inglett

  20. S2- SO42- SO42- So SO42- Sulfate Reduction Deposition Tidal Exchange AEROBIC Adsorbed SO42- Reduction Reduction SO42- Microbial Biomass-S ANAEROBIC P.W. Inglett

  21. Glucose Oxidation P.W. Inglett

  22. Oxygen Equivalents- Energy Yield from Glucose 120 100 80 60 % of Aerobic Energy Yield 40 20 0 O2 NO3- MnO2 Fe(OH)3 SO42- Electron Acceptors P.W. Inglett

  23. Oxidation-Reduction SO42- S2- Mn4+ Mn2+ O2 H2O NO3- N2 CO2 CH4 Fe3+ Fe2+ -200 -100 0 +100 +400 +200 +300 Redox Potential, mV (at pH 7) P.W. Inglett

  24. Sequential Reduction of Electron Acceptors P.W. Inglett

  25. Redox Zones With Depth WATER Aerobic Oxygen Reduction Zone SOIL Eh = > 300 mV I Nitrate Reduction Zone Facultative Mn4+ Reduction Zone II Eh = 100 to 300 mV Fe3+ Reduction Zone III Depth Eh = -100 to 100 mV Sulfate Reduction Zone Anaerobic IV Eh = -200 to -100 mV Methanogenesis V Eh = < -200 mV P.W. Inglett

  26. Redox Potential and pH 1000 800 600 400 Eh [mV] 200 0 -200 -400 -600 0 2 4 6 8 10 12 pH P.W. Inglett Baas Becking et al.

  27. 60 y = 0.33x + 1.3 r2 = 0.88; n = 24 50 40 Sulfate reducing conditions [mg kg-1 hour-1] 30 20 10 0 10 20 30 40 50 60 0 Aerobic [mg kg-1 hour-1] Microbial Activity [Site: Water Conservation 2A] P.W. Inglett

  28. Sulfate Respiration Products: CO2, H2O, S2-, Nutrients Detrital Matter Enzyme Hydrolysis Monomers Sugars, Amino Acids Fatty Acids Complex Polymers Cellulose, Hemicellulose, Proteins, Lipids, Waxes, Lignin Uptake Glucose Glycolysis Oxidative phosphorylation Pyruvate TCA Cycle Substrate level phosphorylation CO2 Acetate Organic Acids [acetate, propionate, butyrate, lactate, alcohols, H2, and CO2] Uptake SO42- + e- Lactate Substrate level phosphorylation ATP [Sulfate Reducing Bacterial Cell] [Fermenting Bacterial Cell] P.W. Inglett

  29. Electron donors used during sulfate reduction • SRB lack enzymes necessary for complex carbon assimilation P.W. Inglett

  30. Electron donors used during sulfate reduction P.W. Inglett

  31. Decreasing energy yield P.W. Inglett

  32. Electron Donors • Capone and Kiene. 1988. Limnol Oceanogr, 33: 725-749. P.W. Inglett

  33. Sulfate Reduction Rates Activity [nmol/g per day] Low carbon wetland 23 Peaty wetland 130 Oligotrophic lake 707 Eutrophic lake 1,224 Marine and salt-marsh 744-24,000 P.W. Inglett

  34. ~65% ~82% ~69-87% S Respiration Salt Marshes Respiration [g C/m2 year] • Sapelo Island Sippewissett Sapelo Island [GA] [MA] (1997) Aerobic respiration 390 390 Denitrification 10 3 Mn and Fe reduction ND ND Sulfate reduction 850 1,800 2,000 Methanogenesis 40 1-8 P.W. Inglett

  35. Sulfate Respiration • Capone and Kiene. 1988. Limnol Oceanogr, 33: 725-749. P.W. Inglett

  36. Capone and Kiene. 1988. Limnol Oceanogr, 33: 725-749. P.W. Inglett

  37. Seasonal Effects Jorgensen, 1977. Marine Biology 41:7-17. P.W. Inglett

  38. J F M A M J J A S O N D Seasonal EffectsSpartina alterniflora marsh Great Sippewissett Marsh 0.5 0.4 0.3 Moles SO42- m-2 d-1 0.2 0.1 0.0 Months Howarth and Giblin, 1983. Limnol and Oceanogr, 28:70-82. P.W. Inglett

  39. 0.5 0.4 0.3 0.2 0.1 0.0 Seasonal EffectsSpartina alterniflora marsh 0.03 0.02 Moles O2m-2 d-1 Moles SO42- m-2 d-1 0.01 -5 0 5 10 15 20 25 30 -5 0 5 10 15 20 25 30 Temp (C) Temp (C) • Howarth and Teal. 1979. Limnol and Oceanogr, 24: 999-1013. P.W. Inglett

  40. Regulators of Sulfate Reduction • Presence of electron acceptor with higher reduction potentials • Oxygen is toxic to sulfate reducers • Sulfate concentration • Freshwater (< 0.1 mM) • Marine (20-30 mM) • Substrate/Electron Donor • Temperature • Microbial populations P.W. Inglett

  41. Decreasing energy yield P.W. Inglett

  42. Anaerobic Sludge Reactor (FISH) Sulfidogenic aggregate Sulfidogenic/Methanogenic aggregate Archeal Probe SRB Probe Appl Environ Microbiol. 1999 October; 65(10): 4618–4629. P.W. Inglett

  43. Competition With Methanogens X X X X P.W. Inglett

  44. Sulfate reducers Vmax Vmax Methanogens V = [Vmax S]/Km + S Km Km [Substrate] Sulfate Reducers vs Methanogens P.W. Inglett

  45. 0.6 CH4 20 SO42- mM SO42- 0.4 mM CH4 10 0.2 20 40 60 80 0 100 Days Sulfate ReductionTypical Lake Sediments from Jorgensen: in Microbial Geochemistry. Krumbein, ed: 1983 Blackwell. P.W. Inglett

  46. Sulfate ReductionTypical Lake Sediments mM SO42- mM SO42- 20 0.2 10 0.1 0 12 SO42- 8 SO42- 0.5 4 1.0 0 cm m 4 CH4 1.5 CH4 8 12 2.0 0.5 1 2 1.0 mM CH4 mM CH4 Marine Freshwater from Jorgensen: in Microbial Geochemistry. Krumbein, ed: 1983 Blackwell. P.W. Inglett

  47. CH4 (mg L-1) 0 5 10 15 10 Water 0 Soil Depth (cm) CH4 -10 SO42- -20 -30 0 20 40 60 80 100 SO42- (mg L-1) Sulfate ReductionCattail Marsh – Sunnyhill Farm Wetland P.W. Inglett

  48. Sulfate Reduction • Iversen and Jorgensen. 1985. Limnol Oceanogr, 30: 944-955. P.W. Inglett

  49. H2S DMS S2- H2S DMS So Sulfur Emissions Mineralization AEROBIC Org-S Mineralization Reduction Reduction SO42- Org-S ANAEROBIC P.W. Inglett

  50. Gaseous S Emissions P.W. Inglett

More Related