1 / 44

Ofer Lahav University College London

Neutrino Masses from LSS Neutrino Masses from the CMB (III) The Dark Energy Survey. Ofer Lahav University College London. Concordance Cosmology. SN Ia CMB LSS – Baryonic Oscillations Cluster counts Weak Lensing Integrated Sachs Wolfe Physical effects: * Geometry

ira
Download Presentation

Ofer Lahav University College London

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Neutrino Masses from LSS Neutrino Masses from the CMB (III) The Dark Energy Survey Ofer Lahav University College London

  2. Concordance Cosmology • SN Ia • CMB • LSS – Baryonic Oscillations • Cluster counts • Weak Lensing • Integrated Sachs Wolfe Physical effects: * Geometry * Growth of Structure

  3. Massive Neutrinos and Cosmology * Why bother? – absolute mass, effect on other parameters * Brief history of ‘Hot Dark Matter’ * Limits on the total Neutrino mass from cosmology within CDM M < 1 eV * Mixed Dark Matter? * Non-linear power spectrum and biasing – halo model * Combined cosmological observations and laboratory experiments

  4. Brief History of ‘Hot Dark Matter’ • *1970s : Top-down scenario with massive neutrinos (HDM) – • Zeldovich Pancakes • *1980s: HDM - Problems with structure formation • *1990s: Mixed CDM (80%) + HDM (20% ) • * 2000s: Baryons (4%) + CDM (26%) +Lambda (70%): • But now we know HDM exists! • How much?

  5. Globalisation and the New Cosmology • How is the New Cosmology affected by Globalisation? • Recall the Cold War era: Hot Dark Matter/top-down (East) vs. Cold Dark Matter/bottom-up (West) • Is the agreement on the `concordance model’ a product of Globalisation? OL, astro-ph/0610713

  6. From Great Walls to Neutrino Masses

  7. Neutrinos decoupled when they were still relativistic, hence they wiped out structure on small scales k > knr = 0.026 (m /1 eV)1/2m1/2 h/Mpc Colombi, Dodelson, & Widrow 1995 CDM CDM+HDM WDM Massive neutrinos mimic a smaller source term

  8. Neutrino properties Thenumber of neutrino species Nn affects the expansion rate of the universe, hence BBN. BBN constraints Nn between 1.7 and 3 (95% CL) (e.g. Barger et al. 2003). From CMB+LSS+SN Ia, N =4.2+1.2-1.7(95% CL) (Hannestad 2005) We shall assume Nn =3 Electron, muon and tau neutrinos Eigen states m1, m2, m3 112 neutrinos per cm3 Wnh2 = Mn/(94 eV)

  9. Neutrino Mass Hierarchy

  10. Absolute Masses of Neutrinos Based on measured squared mass differences from solar and atmospheric oscillations Assuming m1 <m2 <m3 E & L, NJP 05

  11. What could cosmic probes tell us about Neutrinos and Dark Energy?

  12. The Growth factor: degeneracy of Neutrinos Mass and Dark Energy Kiakotou, Elgaroy, OL

  13. DP(k)/P(k) = -8 Wn /Wm Not valid on useful scales! Kiakotou, Elgaroy, OL 2007, astro-ph 0709.0253

  14. Weighing Neutrinos with 2dFGRS • Free streaming effect: • Wn/Wm< 0.13 Total n mass M< 1.8 eV • 0.001 < Wn < 0.04 (Oscillations) (2dF) • a Four-Component Universe ? Wn= 0.05 0.01 0.00 Elgaroy , Lahav & 2dFGRS team, astro-ph/0204152 , PRL

  15. What do we mean by ‘systematic uncertainties’? • Cosmological (parameters and priors) • Astrophysical (e.g. Galaxy biasing) • Instrumental (e.g. ‘seeing’)

  16. Degeneracy of neutrino mass n= 0.9 n=1.0 Prior 0< Wm<0.5 n= 1.1

  17. Biasing vs. neutrino mass Pg(k) = b2(k) Pm(k) b(k) = a log(k) + c a ---- SAM for L>0.75 L* Total neutrino mass Elgaroy & Lahav , JCAP, astro-ph/030389

  18. Weak Lensing is promising M Abazajian & Dodelson (2003) also Hannestad et al. 2006

  19. Non-linear P(k) with massive neutrinos Abazajian et al. (astro-ph/0411552) modeled the effects of neutrino infall into CDM halos and incorporated it in the halo model. The effect is small: P(k)/P(k) » 1% at k » 0.5 h/Mpc for M» 1 eV Future work : high-resolution simulations with CDM, baryons and neutrinos

  20. CMB with massive  M =0.3, 0.9, 1.5, 6.0 eV Fixed cdm = 0.26 E&L 2004

  21. Neutrinos masses and the CMB If znr > zrec  h2 > 0.017 (i.e. M > 1.6 eV) Then neutrinos behave like matter - this defines a critical value in CMB features * Ichikawa et al. (2004 ) from WMAP1 alone  M < 2.0 eV * Fukugita et al. (2006) from WMAP3 alone  M < 2.0 eV

  22. Normalization vs neutrino mass using WMAP alone + concordance model

  23. Is CMB polarisation useful for neutrino mass? Fukugita, Ichikawa, Kawasaki, OL, astro-ph/0605362 Not directly, but reduces degeneracy with the reionization optical depth

  24. Ratio of bulk flows with massive neutrinos  =0.04

  25. Deriving Neutrino mass from Cosmology All upper limits 95% CL, but different assumed priors !

  26. Forecasting Neutrino mass from Cosmology Note different error definitions and assumed priors !

  27. Combined Cosmology & Terrestrial Experiments Fogli et al. Hep-ph/0408045

  28. Combining KATRIN+CMB (Host, OL, Abdalla & Eitel 2007) =>> Ole’s talk

  29. Neutrinos - Summary * Redshift surveys (+ CMB) Mn < 0.7-1.8 eV Ly- (+ CMB+LSS) Mn < 0.17 eV * Within the L-CDM scenarios, subject to priors. * Alternatives: MDM ruled out. * Future: errors down to 0.05 eV using SDSS+Planck, and weak gravitational lensing of background galaxies and of the CMB. Resolve the neutrino absolute mass!

  30. Baryon Wiggles as Standard Rulers

  31. Survey Filters Depth Dates Status Sq. Degrees CTIO 75 1 shallow published VIRMOS 9 1 moderate published COSMOS 2 (space) 1 moderate complete 36 4 deep complete DLS (NOAO) Subaru 30? 1? deep observing 2005? 170 5 moderate observing CFH Legacy 2004-2008 830 3 shallow approved RCS2 (CFH) 2005-2007 VST/KIDS/ VISTA/VIKING 1700 4+5 moderate 2007-2010? 50%approved 5000 4 moderate proposed DES (NOAO) 2008-2012? Pan-STARRS ~10,000? 5? moderate ~funded 2006-2012? LSST 15,000? 5? deep proposed 2014-2024? 1000+ (space) 9 deep proposed JDEM/SNAP 2013-2018? Imaging Surveys proposed moderate 5000? 4+5 2010-2015? VST/VISTA proposed moderate 2+1? DUNE 20000? (space) 2012-2018? Y. Y. Mellier

  32. DUNE: Dark UNiverse Explorer • Mission baseline: • 1.2m telescope • FOV 0.5 deg2 • PSF FWHM 0.23’’ • Pixels 0.11’’ • GEO (or HEO) orbit • Surveys (3-year initial programme): • WL survey: 20,000 deg2 in 1 red broad band, 35 galaxies/amin2 with median z ~ 1, ground based complement for photo-z’s • Near-IR survey (J,H). Deeper than possible from ground. Secures z > 1 photo-z’s • SNe survey: 2x60 deg2, observed for 9 months each every 4 days in 6 bands, 10000 SNe out to z ~ 1.5, ground based spectroscopy

  33. Photometric redshift • Probe strong spectral features (4000 break) • Difference in flux through filters as the galaxy is redshifted.

  34. *Training on ~13,000 2SLAQ*Generating with ANNz Photo-z for ~1,000,000 LRGsMegaZ-LRG z = 0.046 Collister, Lahav, Blake et al., astro-ph/0607630

  35. Baryon oscillations Blake, Collister, Bridle & Lahav; astro-ph/0605303

  36. The Dark Energy Survey Blanco 4-meter at CTIO • Study Dark Energy using 4 complementary techniques: I. Cluster Counts II. Weak Lensing III. Baryon Acoustic Oscillations IV. Supernovae • Two multi-band surveys 5000 deg2g, r, i, z 40 deg2 repeat (SNe) • Build new 3 deg2 camera and data management system Survey 2010-2015 (525 nights) Response to NOAO AO 300,000,000 photometric redshifts

  37. The DES Collaboration Fermilab: J. Annis, H. T. Diehl, S. Dodelson, J. Estrada, B. Flaugher, J. Frieman, S. Kent, H. Lin, P. Limon, K. W. Merritt, J. Peoples, V. Scarpine, A. Stebbins, C. Stoughton, D. Tucker, W. Wester University of Illinois at Urbana-Champaign: C. Beldica, R. Brunner, I. Karliner, J. Mohr, R. Plante, P. Ricker, M. Selen, J. Thaler University of Chicago:J. Carlstrom, S. Dodelson, J. Frieman, M. Gladders, W. Hu, S. Kent, R. Kessler, E. Sheldon, R. Wechsler Lawrence Berkeley National Lab: N. Roe, C. Bebek, M. Levi, S. Perlmutter University of Michigan: R. Bernstein, B. Bigelow, M. Campbell, D. Gerdes, A. Evrard, W. Lorenzon, T. McKay, M. Schubnell, G. Tarle, M. Tecchio NOAO/CTIO: T. Abbott, C. Miller, C. Smith, N. Suntzeff, A. Walker CSIC/Institut d'Estudis Espacials de Catalunya (Barcelona):F. Castander, P. Fosalba, E. Gaztañaga, J. Miralda-Escude Institut de Fisica d'Altes Energies (Barcelona):E. Fernández, M. Martínez CIEMAT (Madrid): C. Mana, M. Molla, E. Sanchez, J. Garcia-Bellido University College London: O. Lahav, D. Brooks, P. Doel, M. Barlow, S. Bridle, S. Viti, J. Weller University of Cambridge:G. Efstathiou, R. McMahon, W. Sutherland University of Edinburgh:J. Peacock University of Portsmouth: R. Crittenden, R. Nichol, R. Maartnes, W. Percival University of Sussex: A. Liddle, K. Romer plus postdocs and students

  38. The Dark Energy Survey UK Consortium (I) PPARC funding: O. Lahav (PI), P. Doel, M. Barlow, S. Bridle, S. Viti, J. Weller (UCL), R. Nichol (Portsmouth), G. Efstathiou, R. McMahon, W. Sutherland (Cambridge) J. Peacock (Edinburgh) Submitted a proposal to PPARC requesting £ 1.7M for the DES optical design. In March 2006, PPARC Council announced that it “will seek participation in DES”. PPARC already approved £220K for current R&D. (II) SRIF3 funding: R. Nichol, R. Crittenden, R. Maartens, W. Percival (ICG Portsmouth) K. Romer, A. Liddle (Sussex) Funding the optical glass blanks for the UCL DES optical work These scientists will work together through the UK DES Consortium. Other DES proposals are under consideration by US and Spanish funding agencies.

  39. DES Forecasts: Power of Multiple Techniques w(z) =w0+wa(1–a) 68% CL Assumptions: Clusters: 8=0.75, zmax=1.5, WL mass calibration BAO:lmax=300 WL:lmax=1000 (no bispectrum) Statistical+photo-z systematic errors only Spatial curvature, galaxy bias marginalized, Planck CMB prior Factor 4.6 improvement over Stage II DETF Figure of Merit: inverse area of ellipse

  40. DES z=0.8 photo-z shell Mn  0.0 eV 0.4 0.9 1.7 Back of the envelope: improved by sqrt (volume) => Sub-eV from DES (OL, Abdalla, Black; in prep)

  41. DES and a Dark Energy Programme • * 4-5 complementary probes • * Survey strategy delivers substantial DE science after 2 years • * Relatively modest (~ $20-30M), low-risk, near-term project with high discovery potential • *Synergy with SPT and VISTA on the DETF Stage III timescale • * Scientific and technical precursor to the more ambitious Stage IV Dark Energy projects to follow: LSST and JDEM

  42. Some Outstanding Questions: * Vacuum energy (cosmological constant, w= -1.000 after all ?) * Dynamical scalar field ? * Modified gravity ? * Why /m = 3 ? * Non-zero Neutrino mass < 1eV ? * The exact value of the spectral index: n < 1 ? * Excess power on large scales ? * Is the curvature zero exactly ?

More Related