1 / 70

Bab 9

Bab 9. Metoda Ilmiah. Metoda Ilmiah Unsur Metoda Ilmiah. Metoda Ilmiah Dalam bentuk paling dasar, metoda ilmiah terdiri atas dua komponen: Ada temuan ilmiah (context of discovery) Ada justifikasi (context of justification) Temuan ilmiah

jaden
Download Presentation

Bab 9

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Bab 9 Metoda Ilmiah

  2. Metoda IlmiahUnsur Metoda Ilmiah Metoda Ilmiah • Dalam bentuk paling dasar, metoda ilmiah terdiri atas dua komponen: • Ada temuan ilmiah (context of discovery) • Ada justifikasi (context of justification) Temuan ilmiah • Supaya dilengkapi dengan argumentasi/penelaran ilmiah • Ada kalanya diawali dengan pertanyaan ilmiah dalam bentuk rumusan masalah Justifikasi ilmiah • Supaya dilengkapi dengan rancangan serta peralatan yang memadai

  3. Metoda IlmiahUnsur Metoda Ilmiah Format Metoda Ilmiah • Lembaga memiliki gaya sendiri untuk format metoda ilmiah • Dalam banyak hal, lembaga mengeluarkan pedoman tentang format metoda ilmiah yang mereka gunakan • Ada komponen penting yang pada umumnya sama untuk setiap format metoda ilmiah Format Penulisan • Ada sejumlah format untuk menulis/melapor temuan ilmiah • Biasanya ditentukan oleh lembaga yang menerima laporan temuan ilmiah (perguruan tinggi, jurnal ilmiah)

  4. THE SCIENTIFIC METHOD The scientific method is usually described in five steps. However, some identify only three or four steps, while others say there are six or seven steps. The number of steps is not important. What is important is the process that the researcher follows (a hypothetico-deductive paradigm). The scientific method should be regarded as a series of steps but, rather, as a set of overlapping and interdependent procedures for systematically studying phenomena and revealing knowledge. In other words, it is a way of thinking when doing research. In fact, the philosopher John Dewey referred to the scientific method as a “habit in mind”. The steps of the scientific method described here need not be followed in order, although researchers usually write up their reports as if they were. They do this more to meet the conventions of researched writing established over the years and to show that each of the steps was attended to in their research than to show that they began with the first step of the process. To illustrate the steps in the scientific method of research, we will refer to the previous example of the student whose car would not start. Step 1 The first step in the scientific method is usually characterized as the sensing or realizing that some problem exists through familiarity with a topic. For example, something might happen that cannot be easily explained, or the way to accomplish some goal may not be

  5. evident.The realization that the car did not start even though it had worked previously served to establish the existence of the problem for the student. Step 2 The problem is clarified; that is, the nature, and specifics of the problem are identified. In our example, the student recognized the problem to be, simply, “How do I get the car started?” The problem is a question that determines, to a large extent, the direction the investigation will take. For example, had the student recognized his problem as “How will I get to school today?” or “Whom shall I ask to fix the car?” his subsequent behavior would have been very different. Step 3 the third step is devising the plan for the research. To do this, a statement describing a possible solution to the problem is made, and procedures are identified to test the plausibility of this tentative solution. Going back to our example, the student first thought that the problem might be with the battery, and so he developed a strategy to test that possibility. Finding that solution to be implausible or unsupported by his observations, he reasoned that the problem might be due to damp terminals on the starter motor, and he proceeded to test this. He continued to make plausible guesses about the cause of his inability to get the car started until he found one that was supported by what he saw in his investigati-

  6. gations. Each guess he made led to a strategy. A plan for investigating the plausibility of the solution. Step 4 This step is decision making. Based upon the data collected in the previous step, the researcher evaluated the adequacy of the proposed solution. If the data support the solution, it is accepted as reasonable. The student in our example rejected the reasonableness of two possible solutions before he found one that was adequately supported by his observation. Step 5 The final step involves interpretation and generalization of the findings into the larger body of knowledge about the phenomenon. This might involve consideration of previous knowledge in terms of the new knowledge or further experimentation. Both consideration of what is already known and further experimentation in light of the new knowledge might be appropriate. We saw this in our example when the student replaced the worn-out fuse. In a sense, he was investigating whether or not the car would start with a new fuse in place of the old one. Furthermore, as he was driving to school, the student considered his knowledge about the fuse in his car in terms of what he knew about blown fuses in general and, therefore, determined to search for a short circuit.

  7. HYPOTHETICO-DEDUCTIVE METHOD Procedure for the construction of a scientific theory that will account for results obtained through direct observation and experimentation and that will, through inference, predict further effects that can then be verified or disproved by empirical evidence derived from other experiments. Developed by Sir Isaac Newton during the late 17th century (but named at a later date by philosophers of science), the hypothetico-deductive method assumes that properly formed theories arise as generalizations from observable data that they are intended to explain. These hypotheses, however, cannot be conclusively established until the consequences that logically follow from them are verified through additional observations and experiments. In conformity with Descarte’s rationalism, the hypothetico-deductive method treats theory as deductive system in which particular empirical phenomena are explained by relating them back to general principles and definitions. The method, however, abandons the Cartesian claim that those principles and definitions are self-evident and valid; it assumes that their validity is determined only by the exact light their consequences throw on previously unexplained phenomena or on actual scientific problems.

  8. Metoda IlmiahPokok Pikiran Bertrand Russell • Pengetahuan teoretik untuk memahami dunia. Pengetahuan praktis untuk mengubah dunia • Ilmuwan yang membangun ilmu memiliki dua kebaikan: (1) kesabaran luar biasa di dalam observasi, dan (2) keberanian besar di dalam merumuskan hipotesis • Sebagai aturan, perumusan hipotesis adalah bagian tersulit di dalam karya ilmu, serta merupakan bagian yang, tidak boleh tidak, harus ada kemampuan tinggi John Locke • Pengetahuan di dunia dimulai dari persepsi indriah (sense perception) dan refleksi • Mereka memberikan kepada pikiran bahan pengetahuan untuk membangun ide • Pemahaman akan pemikiran dan proses mengetahui, perlu memahami bahasa sebagai media untuk berpikir dan berkomunikasi • Diperlukan kata umum sebagai konsep abstrak

  9. THEORY OF KNOWLEDGE (dari John Locke) Locke was thoroughly suspicious of the view that a thinker could work out by reason alone the truth about the universe. Much as he admired Descartes, he feared that this speculative spirit in him, and he despised it in the Scholastic philosophers. In this sense he rejected metaphysics. Knowledge of the world could only be gained by experience and reflection on experience, and this knowledge was being gained by Boyle, Sydenham, Christiaan Huygens, and Newton. They were the true philosophers who were advancing knowledge. Locke set himself the humbler task, as he conceived it, of understanding how this knowledge was gained. What was “the original, certainty, and extent of human knowledge, together with the grounds and degrees of belief, opinion, and assent?” Empiricism. As for “the original,” the answer was plain. Knowledge of the world began in sense perception, and self-knowledge in introspection, or “reflection” in Locke’s language. It did not begin in innate knowledge of maxims or general principles, and it did not proceed by syllogistic reasoning from such principles. In the 17th century there had been much vague talk about innate knowledge, and in Book I of his Essay Concerning Human Understanding Locke examines this talk and

  10. shows its worthlessness. In Book II of his Essay he begins by claiming that the sources of all knowledge are sense experience and reflection; these are not themselves, however, instances of knowledge in the strict sense, but they provide the mind with the material of knowledge. Locke calls the material so provided “ideas.” Ideas are objects “before the mind,” not in the sense that they are physical objects, but that they represent them. Locke distinguishes ideas that represent actual qualities of objects (such as size, shape, or weight) from ideas that represent perceive qualities, which do not exist in objects except as they affect observers (such as colour, taste, or smell). Locke designates the former primary qualities and the latter secondary qualities. Locke proceeds to group and classify the ideas, with a view to showing that the origin of all of them lies in sensation and reflection. Although ideas are immediately “before the mind,” not all of them are simple. Many of them are compounded, and their simple parts can be revealed on analysis. It is these simple ideas alone that are given in sensation and reflection. Out of them the mind forms complex ideas, though Locke is ambiguous on this point. For while he uses the language of “forming” or “compounding” and speaks of the “workmanship” of the mind, the compounding is frequently in accordance with what is perceived “to go together” and is not arbitrary. Locke’s reflection upon cause and effect, had they been

  11. elaborated, would undoubtedly have led him into acute difficulties. He does admit one failure. As an empiricist he can give no account of the idea of substance; it is, he thinks, essential and not to be denied, and yet it is not a simple idea given in sensation or reflection nor is it derived from simple ideas so given. In fact he can say little of it; it is “a-something-I-know-not-what.” Thus, the case for empiricism cannot be said to be entirely established by Book II, but Locke thinks it strong enough for him to persist the view that knowledge of the physical world is wholly derived from sense perception. Language. According to Locke, Book III, on language, “cost [him] more pains” than any other book of his Essays; yet it is the book that has been most neglected. To understand thinking and knowing one must understand language as the means of thought and communication. Words are conventional signs, but signs, according to Locke, not immediately of things but of ideas of thing, so that he carries his theory of ideas into his account of knowledge. Frequently, the idea signified by the word is not clear, and sometimes words are used even when there are no ideas corresponding to them. This is particularly so in the case of general words, without which language would be so impoverished as to lose most of its worth. The use of general words, in Locke’s mind, is bound up with the theory of universals. Does the general word stand for a particular idea that is used in representative capacity? Or is the universal nothing more than a creation of the mind,

  12. through abstraction, to which is attached a name? In considering natural substances Locke is inclined strongly toward a conceptualism according to which the use of general words is possible only because they signify “nominal essences.” In this view what is meant is not the real essence but an abstract concept, something brought about through “the workmanship of the understanding.” Locke also discusses the names of simple ideas and of relations, and it is interesting to find the crude beginnings of a discussion of what were later to be called logical or operative words. Book III contains also a valuable account of definition, which denies the theory that all definition must be per genus et differentiam (by comparison and contrast). The final chapters deal with the inevitable imperfections of language and with avoidable abuses.

  13. Metoda IlmiahPokok Pikiran Immanuel Kant • Ada tiga langkah di dalam penemuan pengetahuan: Pertama: • “sensation” tak terstruktur, menurut ruang dan waktu Kedua: • “perception” melalui hubungan konsep kosalitas, kontingensi, … Ketiga: • “penilaian” disusun ke dalam sistem David Hume • Pikiran memperoleh ide dari kesan. Kesan hanya berarti kalau dapat membawa obyek suber kesan ke dalam pikiran • Dua arti pada ide • Analitik -> hubungan ide • Empirk -> fakta • Kosalitas memastikan adanya hubungan perlu di antara fakta

  14. HUMAN KNOWLEDGE (dari David Hume) An Enquiry Concerning Human Knowledge is an attempt to define the principles of human knowledge. It poses in logical form significant questions about nature of reasoning in regard to matters of fact and experience, and it answers them by recourse to the principle of association. The basis of this exposition is a twofold classification of objects of awareness. In the first place, al such objects are either “impressions,” data of sensation or of internal consciousness, or “ideas,” derived from such data by compounding, transposing, augmenting, or diminishing. That is to say, the mind does not create any ideas but derives them from impressions. From this Hume develops a theory of meaning. A word that does not stand directly for an impression has meaning only if it brings before the mind an object that can be gathered from an impression by one of the mental processes mentioned. In the second place, there are two approaches to construing meaning, an analytical one, which concentrates on the “relations of ideas,” and an empirical one, which focuses on “matters of fact.” Ideas can be held before the mind simply as meanings, and their logical relations to one another can then be detected by rational inspection. The idea of a plane triangle, for example, entails the equality of its internal angles to two right angles, and the idea of motion entails

  15. the ideas of space and time, irrespective of whether there really are such things as triangles and motion. Only on this level of mere meanings, Hume asserts, is there room for demonstrative knowledge. Matters of fact, on the other hand, come before the mind merely as they are, revealing no logical relations; their properties and connections must be accepted as they are given. That primroses are yellow, that lead is heavy, and that fire burns things are facts, each shut up in itself, logically barren. Each, so far as reason is concerned, could be different: the contradictory of every matter of fact is conceivable. Therefore, any demonstra-tive science of fact is impossible. From this basis Hume develops his doctrine about causality. The idea of causality is alleged to assert a necessary connection among matters of fact. From what impression, then, is it derived? Hume states that no causal relation among the data of the senses can be observed, for, when a person regards any events as causally connected, all that he does and can observe is that they frequently and uniformly go together. In this sort of togetherness it is a fact that the impression or idea of the one event brings with it the idea of the other. A habitual association is set up in the mind; and, as in other forms of habit, so in this one, the working of the association is felt as compulsion. This feeling, Hume concludes, is the only discoverable impressional source of the idea of causality. Hume then considers the process of causal inference,

  16. And in so doing the introduces the concept of belief. When a person sees a glass fall, he not only thinks of its breaking but expects and believes that it will break; or, starting from an effect, when he sees the ground to be generally wet, he not only thinks of rain but believes that there has been rain. Thus belief is a significant component in the process of causal inference. Hume then proceeds to investigate the nature of belief, claiming that he was the first to do so. He uses this term in the narrow sense of belief regarding matters of fact. He defines belief as a sort of liveliness or vividness that accompanies the perception of an idea. A belief is more than an idea; it is a vivid and lively idea. This vividness is originally possessed by some of the objects of awareness, by impressions and simple memory images of them. By association it comes to belong to certain ideas as well. In the process of causal inference, then, an observer passes from an impression to an idea regularly associated with it. In the process the aspect of liveliness proper to the impression infects the idea, Hume asserts. And it is this aspect of liveliness that Hume defines as the essence of belief. Hume does not claim to prove that the propositions, (1) that events themselves are causally related, and (2) that they will be related in the future in the same ways they were in the past, are false. He firmly believed both of these propositions are insisted that everybody else believed them, will continue to believe them, and must continue to believe them in order to survive. They are na-

  17. tural beliefs, inextinguishable propensities of human nature, madness apart. What Hume claims to prove is that natural beliefs are not obtained and cannot be demonstrated either by empirical observation or by reason, whether intuitive or inferential. Reflection shows that there is no evidence for them and shoes also both that we are bound to believe them and that it is sensible or sane to do so. This is Hume’s skepticism : it is an affirmation of that tension, a denial not of belief but of certainty. As a philosopher. Hume conceived of philosophy as the inductive science of human nature, and he concluded that man is more a creature of sensitive and practical sentiment than of reason. Of the confident he is seen as one of the few British classical philosophers. For some Germans his importance lies in the fact that Immanuel Kant conceived his critical philosophy in direct reaction to Hume. Hume was one of the influences that led Auguste Comte, the 19th-century French mathematician and sociologist, to positivism. In Britain, his positive influence is seen in Jeremy Bentham, the early 19th-century jurist philosopher, who was moved to utilitarianism (the moral theory that fight conduct should be determined by the usefulness of its consequences). …

  18. Metoda IlmiahPokok Pikiran Leibniz • Di dalam alam semesta, ditemukan wujud “sederhana” dan “sempurna.” • Ada beberapa prinsip: • Prinsip ekstrim (minimum dan maksimum) • Prinsip kekekalan • Prinsip kesinambungan • Hubungan terkuat ditemukan melalui deduksi dan empiri John Stuart Mill • Penalaran berasal dari pengalaman • Pernyataan ilmiah berupa • Eksistensi fakta • Hubungan fakta (koeksitensi, urutan, kemiripan, kosalitias)

  19. A SYSTEM OF LOGIC (dari John Stuart Mill) The distinctive features of Mill’s A System of Logic … (1843) was the idea that the rules of reasoning are obtained from experience, as opposed to the traditional view that they a part of the mind’s construction, or of the universe. A statement, he said, asserts either the existence of a fact or the relation between facts, which may be those of coexistence, sequence, resemblance, or causality. Its truth is tested by its correspondence with the reality we perceive by our senses or by reasoning inductively from the perception, that is, from the particular to the general. In stating that logic is the method of testing the factual validity of statements, Mill was the forerunner of the scientific method.

  20. Metoda IlmiahPokok Pikiran Rene Descartes Ada empat pikiran meliputi: • Meragukan hal yang belum diketahui dengan pasti • Memecah masalh ke dalam bagian-bagian • Mulai memecahkan bagian yang mudah dan beranjak ke yang susah • Caranya harus cermat dan lengkap Aristoteles • Metoda induksi • Metoda deduksi Roger Bacon/Grosseteste/Galileo • Metoda resolusi • Metoda komposisi Newton • Metoda analisis • Metoda sintesis

  21. Metoda IlmiahPokok Pikiran Model Logico-hipothetico verification • Rumuskan hipotesis secara logis dan didukung oleh ilmu • Menguji hipotesis secara empiris (sampai ke kasus ekstrim atau kasus destruktif) Model Herschel • Memecah fenomena kompleks ke aspek yang relevan untuk metoda • Ada metoda hipotesis • Ada metoda skema induktif Model Whewell • Fakta dipecah menjadi fakta elementer • Ide diperjelas ke dalam konsep • Perpaduan fakta dan konsep menghasilkan hukum dan teori

  22. Metoda IlmiahPokok Pikiran Model Aristoteles Istilah yang digunakan Aristotels A = Metoda Induksi B = Metoda deduksi Roger Bacon/Grosseteste/Galileo A = metoda resolusi B = metoda komposisi Newton A = metoda analisis B = metoda sintesis

  23. Metoda IlmiahPokok Pikiran

  24. Metoda IlmiahFormat Format Metoda Ilmiah Format paling mendasar • Temuan (context of discovery) • Pembenaran (context of justification) Format dikembangkan • Pertanyaan ilmiah (rumusan masalah) • Jawaban ilmiah (rumusan hipotesis) • Rancangan pengujian • Pengujian (pembenaran) Format rinci • Dikembangkan di masing-masing lembaga • Beberapa di antaranya ditampilkan di sini

  25. Metoda IlmiahFormat

  26. Metoda IlmiahFormat

  27. Metoda IlmiahFormat

  28. Metoda IlmiahFormat

  29. Metoda IlmiahFormat

  30. Metoda IlmiahMasalah Masalah 1. Hakikat • Merupakan pertanyaan ilmiah • Biasanya disajikan dalam kalimat tanya • Memerlukan jawaban ilmiah • Menentukan arah dan cakupan penelitian 2. Klasifikasi • Ada banyak cara untuk mengklasifikasikan masalah • Di sini direkomendasikan klasifikasi Dillon Orde 1 : tentang substansi dan ciri Orde 2 : tentang perbandingan Orde 3 : tentang ketergantungan

  31. Metoda IlmiahMasalah Klasifikasi Dillon • Zero Order None O. Rhetorical No knowledge or no answer • First Order: Properties Individual attributes of P or of Q 1. Existence/affirmation Whether P is negation 2. Instance/identification Whether this is a/the P 3. Substance/Definition What is P a. Nature What makes P be P b. Label Whether “P” names P c. Meaning What P or “P” means 4. Character/Description What P has 5. Function/Application What P does a. Modes How P acts b. Uses What P can do c. Means How P does or is done 6. Rationale/Explication Why or how P has a certain attribute

  32. Metoda IlmiahMasalah • Second Order: Comparative attributes of Comparison P and Q 7. Concomitance Whether P goes with Q a. Conjunction Whether P and Q are associates b. Disjunction Whether P and Q are alternatives 8. Equivalence Whether P is like Q, and wherein 9. Difference Whether P and Q differ a. Disproportion Whether P is more/less than Q b. Subordination Whether P is part/whole of Q

  33. Metoda IlmiahMasalah • Third Order: Contigent attributes of P Contigencies and Q 10. Relation Whether P relates to Q 11. Correlation Whether P and Q covary 12. Conditionality Whether or how if P then Q or if Q then P a. Consequence Whether if P then Q, or what X if P b. An tecedence Whether if Q then P, or what X then P 13. Biconditionality Whether or how if P then (causality) Q and if Q then P • Extra Order: Other attributes of ways Other of knowing P 14. Deliberation Whether to do and think P 15 Unspecified to know P in other ways • 16. Unclear No known

  34. Metoda IlmiahMasalah 3. Model Struktural Orde dua: Perbandingan Orde tiga: Ketergantungan X1 Yx1 = ? X2 Yx2 X Y X Y X Y Z X1 Y X2

  35. Metoda IlmiahMasalah Contoh model struktural SES = Social Economic Status Intel = Intelligence nAch = need for achievement Ach = achievement

  36. Metoda IlmiahMasalah Klasifikasi lainnya dari Aristoteles (Posterior Analytics) Lundsted (1968) Bunge (1967) Steiner (1978) Shulman (1981) Smith (1981) Johnston and Pennypacker (1980) Laudan (1977) Fischer (1970) Aritoteles (Topics) Rescher (1982) Tidak dirinci di sini

  37. Metoda IlmiahMasalah Albert Einstein dan L. Infeld • The formulation of a problem is far more often essential than its solution, which may be merely a matter of mathematical or experimental skill. • To raise new questions, new possibilities, to regard old problems from a new angle requires creative imagination and mark real advance in science.

  38. Metoda IlmiahMasalah 4. Isi Masalah • Ciri, perbandingan, ketergantungan pada klasifikasi Dillon pada masalah adalah variabel • Variabel berisikan aribut dari subyek (makhluk, benda, peristiwa) Atribut Subyek Hasil ujian mahasiswa Upah bulanan pegawai Panjang belalai gajah Kecepatan lari kijang Kekuatan besi beton Intensitas cahaya Temperatur kebakaran Kecepatan olah data

  39. Metoda IlmiahMasalah 5. Pengertian Variabel Arti variabel perlu jelas sehingga perlu dijelaskan, mencakup • Arti (untuk dipahami) • Ciri (untuk argumentasi ilmiah) • Indikator (untuk pembuatan alat ukur) Abstrak (konstruk) tesis spesifik general Konkrit (fakta)

  40. Metoda IlmiahMasalah Fakta : kenyataan yang dapat langsung diukur seperti umur, tempat lahir, jumlah anggota keluarga Konsep : pengertian dari sesuatu yang nyata arti pegawai, arti mahasiswa Konstruk: besaran yang dikonstruksi oleh para ilmuwan (abstrak) seperti sikap, gelisah, minat, frustrasi Spesifik: hanya berlaku pada suatu wilayah yang sangat terbatas, seperti di perusahaan XYZ General: berlaku umum seperti di semua perusahaan, di seluruh dunia, di seluruh jagat raya

  41. Metoda IlmiahMasalah Pengertian konsep dan konstruk dapat saja berbeda-beda karena • Digunakan oleh bidang ilmu berbeda, seperti • oleh psikologi • oleh sosiologi • oleh antropologi • Di bidang ilmu sama, ada aliran berbeda • Pada aliran sama, ada pakar berbeda Digunakan di dalam konteks yang berbeda memerlukan pengertian yang berbeda (lihat format UNJ)

  42. Metoda IlmiahMasalah 6. Operasionalisasi Variabel Variabel dapat diukur, sehingga memerlukan • Skala ukur • Alat ukur • Cara mengukur • Data hasil ukur • Pengolahan data Validitas • Data hasil ukur harus secara benar mengukur apa yang harus diukur Reliabilitas • Data hasil ukur harus dapat dipercaya yakni memberikan data yang sesungguhnya

  43. Metoda IlmiahMasalah Variabel Manifes dan Variabel Laten Variabel Manifes • Dapat langsung terukur • Misal: tinggi badan, hasil ujian, … Variabel Laten • Tidak dapat langsung terukur • Misal: sikap, hasil belajar, … (konstruk) Pengukuran Variabel Laten • Melalui padanan variabel manifes yang sesuai • Misal: hasil belajar melalui hasil ujian, sikap melalui hasil iuesioner • Masalah: kecocokan (validitas) di antara keduanya

  44. Metoda IlmiahMasalah 7. Struktur Rumusan Masalah • Rumusan masalah harus jelas sehingga mungkin terjawab • Rumusan masalah mengaitkan variabel yang secara pengertian variabel (konsep, konstruk) memang tidak terkait • Ini berarti bahwa kaitan di antara variabel terjadi karena hakikat ilmu dan bukan karena kosep • Perangkat masalah dapat terdiri atas satu atau lebih rumusan masalah • Di dalam satu penelitian, apabila terdapat lebih dari satu rumusan masalah, maka mereka harus merupakan satu kesatuan yang ketat

  45. Metoda IlmiahMasalah 8. Contoh Rumusan Masalah • Apakah hasil belajar siswa lebih tinggi pada cara mengajar direktif daripada cara mengajar nondirektif? (orde 2) • Apakah terdapat perbedaan kecepatan olah data di antara quicksort dan bubblesort? (orde 2) • Apakah terdapat perbedaan kekuatan penopangan di antara tiang pancang pantekan dan cor-coran? • Apakah ada hubungan di antara harga barang dengan jumlah pembeli di toko? (orde 3) • Apakah hubungan emosional ayah dan anak lelaki berbeda dengan hubungan emosional ibu dan anak perempuan? (orde 3 dan 2)

  46. Metoda IlmiahMasalah 9. Pelengkap Masalah Latar belakang • Memberikan alasan mengapa sampai ke rumusan masalah • Semua varaibel di dalam rumusan masalah tercantum di dalam latar belakang, biasanya dimulai dari Y dan disusul oleh X • Jangan sampai ada jawaban pasti terhadap rumusan masalah Identifikasi masalah • Menurut Descartes, masalah dipecah ke dalam bagian-bagian • Di sini disajikan bagian-bagian masalah apa saja yang dapat ditemukan pada latar belakang masalah Pembatasan masalah • Membatasi mana saja pada identifikasi masalah ditetapkan sebagai masalah penelitian

  47. Metoda IlmiahHipotesis Hipotesis 1. Hakikat • Merupakan pernyataan ilmiah spekulatif yang berasal dari hasil pemikiran • Jika hasil pemikiran ini mengacu kepada premis (teori, hukum) maka diperoleh hipotesis deduktif • Jika hasil pemikiran ini mengacu kepada data yang ada maka diperoleh hipotesis induktif • Biasanya hipotesis merupakan jawaban ilmiah terhadap pertanyaan ilmiah (rumusan masalah) • Hipotesis disajikan dalam kalimat pernyataan • Rumusan hipotesis harus cocok dengan rumusan masalah yang dijawabnya

  48. Metoda IlmiahHipotesis 2. Rumusan Hipotesis dan Rumusan Masalah • Banyaknya hipotesis adalah sama dengan banyaknya rumusan masalah (satu rumusan masalah satu hipotesis) • Isi hipotesis harus benar merupakan jawaban yang tepat dari isi rumusan masalah (cocok) 3. Hipotesis Statistika • Apabila data berbentuk acak atau probabilitas maka biasanya pengujian hipotesis dilakukan melalui statistika • Dalam hal ini, di samping hipotesis penelitian, disusun juga hipotesis statistika • Di dalam hipotesis statistika, kita perlu menentukan parameterstatistika mana yang kita gunakan

  49. Metoda IlmiahHipotesis 4. Contoh Hipotesis • Hasil belajar siswa lebih tinggi pada cara mengajar direktif daripada cara mengajar nondirektif. • Kecepatan olah data lebih tinggi pada quicksort daripada bubblesort. • Tiang pancang pantekan dan cor-coran sama kekuatan penopangannya. • Terdapat hubungan negatif di antara harga barang dengan jumlah pembeli di toko. • Hubungan emosional ibu dan anak perempuan lebih besar dari hubungan emosional ayah dan anak lelaki.

  50. Metoda IlmiahHipotesis 5. Pelengkap Hipotesis • Hipotesis harus didukung oleh pemikiran yang kuat (karena juga biaya dan waktu untuk menguji hipotesis secara empirik cukup besar) • Pemikiran yang biasa digunakan untuk sampai ke hipotesis adalah logika Silogisme kategoris Silogisme hipotetik Silogisme disjunktif Silogisme alternatif Inferensi segera Konversi Obbersi • Pemikiran harus cukup meyakinkan Tidak ada kontradiksi Tidak melompat ke konklusi (ada syarat perlu dan syarat cukup) Tidak bias atau timpang

More Related