110 likes | 337 Views
Chapter 7: Trigonometric Identities and Equations. Jami Wang Period 3 Extra Credit PPT. Pythagorean Identities. sin 2 X + cos 2 X = 1 tan 2 X + 1 = sec 2 X 1 + cot 2 X = csc 2 X These identities can be used to help find values of trigonometric functions. .
E N D
Chapter 7: Trigonometric Identities and Equations Jami Wang Period 3 Extra Credit PPT
Pythagorean Identities • sin2 X + cos2 X = 1 • tan2 X + 1 = sec2 X • 1 + cot2 X = csc2 X • These identities can be used to help find values of trigonometric functions.
Pythagorean Identities cont. • Example: • 1. If csc X = 4/3, find tan X • csc2 X= 1 + cot2 X Pythagorean identity • (4/3) 2 = 1 + cot2 Use 4/3 for csc X\ • 16/9 = 1 + cot2 X • 7/9 = cot2 X • ±√7 / 3 = cot X Find tan X tan X= 1/ cot X = ± (3 √7)/7
Verifying Trigonometric Identities • 1. Change to sin X / cos X • 2. LCD • 3. Factor (and Cancel) • 4. Look Trig identities • 5. Multiply by conjugate
Verifying Trigonometric Identities cont. • Example: • Verify that sec2 X – tan X cot X = tan 2 X is an identity • sec2 X – tan X * 1/tan X= tan 2 X cot X = 1/tan X • sec2 X – 1 = tan 2 X Multiply • tan 2 X + 1 -1 = tan 2 X tan2 X + 1 = sec2 X • tan 2 X = tan 2 X Simplify
Sum and Difference Identities • sin ( α + β) = sin αcosβ + cosα sin β • sin ( α − β) = sin αcosβ − cosα sin β • cos ( α + β) = cosαcosβ − sin α sin β • cos ( α − β) = cosαcosβ + sin α sin β • tαn(α+β) = (tαnα + tαnβ)/(1 - tαnαtαnβ) tαn(α-β) = (tαnα - tαnβ)/(1 + tαnαtαnβ)
Sum and Difference Identities cont. 240 ⁰ and 45 ⁰are common angles whose sum is 285⁰ Sum Identity for Tangent Multiply by conjugate to simplify • Tan 285⁰ = tan (240 ⁰ + 45 ⁰) = tan240 ⁰ + tan 45 ⁰ 1-tan240 ⁰ tan45 ⁰ = √3+1 1-(√3)(1) = -2-√3
Double Angle Formulas • sin2X= 2sinXcosX • cos2X=cos²X-sin²X • cos2X=2cos²X-1 • cos2X=1-2sin²X • tan2X=2tanX 1-tan²X
Double Angle Formulas cont. • Example: • cos2X = cos²X-sin²X = (√5/3)²-(2/3) ² = 1/9
Half Angle Formulas • sin α /2 = ±√1-cos α/ 2 • cos α/2 = ±√1+cos α/ 2 • tan α/2 = ±√1-cos α/ 1+ cos α, cos α≠-1
Solving Trigonometric Equations • Example: • sin X cos X – ½ cosX = 0 cosX (sinX- ½)=0 Factor cos X = 0 or sinX- ½ =0 X= 90⁰ sinX= ½ X= 30⁰ Values are 30⁰ and 90⁰