1 / 33

COLLAGEN CHEMISTRY AND BIOLOGY

COLLAGEN CHEMISTRY AND BIOLOGY. DEFINITION: A protein with chains containing repetitive Gly-X-Y sequences allowing formation of molecules with triple-helical domains .

jeanne
Download Presentation

COLLAGEN CHEMISTRY AND BIOLOGY

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. COLLAGEN CHEMISTRY AND BIOLOGY DEFINITION: A protein with chains containing repetitive Gly-X-Y sequencesallowing formation of molecules with triple-helical domains. The triple-helical domains as well as nontriple-helical domains of the molecules interact to form multimolecular aggregates that function primarily as structural elements in extracellular spaces. Collagens are the most abundant protein in mammals (25% of protein mass).

  2. Locations of Collagens (Skin)

  3. Locations of Collagens (Basement Membranes)

  4. LOCATIONS OF COLLAGEN (VASCULAR SYSTEM)

  5. LOCATIONS OF COLLAGENS • BONES • TEETH • CARTILAGE

  6. LOCATIONS OF COLLAGENS (TEETH)

  7. LOCATIONS OF COLLAGENS (EYE)

  8. Posterior Polymorphous Corneal Dystrophy One cause is a dominantly acting mutation in a gene encoding for collagen VIII (COL8A2). Ref: Coupal et al.

  9. Osteogenesis imperfecta Blue sclerae of an OI victim Caused by genetic mutations in collagen genes COL1A1, COL1A2

  10. COLLAGEN TYPES 27 types with 45genetically distinct chains: 1.Fiber-forming collagens: • the quantitatively predominate collagens • chains form several molecular species: (Types I, II, III, V, and XI) + (XXIV and XXVII) • procollagen to collagen conversion • fibers constructed of staggered, side to side, parallel association of molecules

  11. COLLAGEN TYPES, CONT. 2. Fiber-associated collagens: (IX, XII, XIV, XVI, XIX, XX, XXI, XXII) 3. Network collagens (IV, VIII, X) 4. Filament collagen (VI) 5. Anchoring fibril collagen (VII) 6. Transmembrane collagens: (XIII, XVII, XXIII, XXV) 7. Multiplexins(XV, XVIII) Characteristics: 1) smaller and often numerous helical domains; 2) procollagen to collagen conversion (seldom); 3) staggered, side to side and antiparallel association when aggregates are formed.

  12. Collagens: primary structure Almost every third residue is glycine Approx 17% is proline Contains hydroxyproline Contains hydroxylysine (which can form interchain bonds or be glycosylated)

  13. Collagen – A Triple Helix Principal component of connective tissue (tendons, cartilage, bones, teeth) Basic unit is tropocollagen: Three intertwined polypeptide chains (1K residues each) MW = 285,000 300 nm long, 1.4 nm diameter Unique amino acid composition, including hydroxylysine and hydroxyproline Hydroxyproline is formed by the vitamin C-dependent prolyl hydroxylase reaction.

  14. Collagen – Hydroxylation of Proline

  15. Scurvy (Vitamin C deficiency) Scorbutic gums due to of scurvy. Notice gingival red triangles. Vitamin C is needed for post translational amino acid modifications in collagen.

  16. Collagen – A Triple Helix The secrets of its a.a. composition... Nearly one residue out of three is Gly Proline content is unusually high Unusual amino acids found: 4-hydroxyproline 3-hydroxyproline 5-hydroxylysine Pro and HyPro together make 30% of res.

  17. A case of structure following composition The unusual amino acid composition of collagen is unsuited for alpha helices or beta sheets It is ideally suited for the collagen triple helix: three intertwined helical strands Much more extended than alpha helix, with a rise per residue of 2.9 Angstroms 3.3 residues per turn Long stretches of Gly-Pro-Pro/HyP TheCollagen Triple Helix

  18. Collagen – A Triple Helix Figure 6.16 Poly(Gly-Pro-Pro), a collagen-like right-handed triple helix composed of three left-handed helical chains.

  19. Staggered arrays of tropocollagens Banding pattern in EMs with 68 nm repeat Since tropocollagens are 300 nm long, there must be 40 nm gaps between adjacent tropocollagens (5 x 68 = 340 nm) 40 nm gaps are called "hole regions" - they contain carbohydrate and are thought to be nucleation sites for bone formation Collagen Fibers

  20. Collagen – A Triple Helix Figure 6.17 In the electron microscope, collagen fibers exhibit alternating light and dark bands. The dark bands correspond to the 40-nm gaps between pairs of aligned collagen triple helices.

  21. Every third residue faces the crowded center of the helix - only Gly fits here Pro and HyP suit the constraints of φ and ψ Interchain H-bonds involving HyP stabilize helix Fibrils are further strengthened by intrachain lysine-lysine and interchain hydroxypyridinium crosslinks Structural basis of the collagen triple helix

  22. The hole regions of collagen fibrils may be the sites of nucleation for bone mineralization A disaccharide of galactose and glucose is covalently linked to the 5-hydroxyl group of hydroxylysines in collagen by the combined action of galactosyltransferase and glucosyltransferase.

  23. LYSYL HYDROXYLATION

  24. MINERALIZATION

  25. SYNTHESIS – ASSEMBLY OF A COLLAGEN MOLECULE

  26. SPECIFICITY OF CHAIN ASSOCIATION

  27. EXTRACELLLULAR PROCESSING OF COLLAGEN

  28. FIBER ARCHITECTURE

  29. CROSS-LINKS IN A FIBERPHYSICAL STABILITY

  30. FIBROUS COLLAGEN SUMMARY

  31. INDUSTRIAL AND CLINICAL USES OF COLLAGEN • Denatured collagen (gelatin): • FOODS • COATINGS • CAPSULES • Native collagen: • SURGICAL DRESSINGS • IMPLANTS • TISSUE ENGINEERING

  32. PREPARATION FOR CROSS-LINKING

  33. REACTIONS FOR CROSS-LINKS

More Related