1 / 31

Mean Shift 算法 原理和在目标跟踪上的应用

Mean Shift 算法 原理和在目标跟踪上的应用. Agenda. Mean Shift Theory What is Mean Shift ? Density Estimation Methods Deriving the Mean Shift Mean shift properties Applications Clustering Discontinuity Preserving Smoothing Object Contour Detection Segmentation Object Tracking.

jennieh
Download Presentation

Mean Shift 算法 原理和在目标跟踪上的应用

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Mean Shift算法原理和在目标跟踪上的应用

  2. Agenda • Mean Shift Theory • What is Mean Shift ? • Density Estimation Methods • Deriving the Mean Shift • Mean shift properties • Applications • Clustering • Discontinuity Preserving Smoothing • Object Contour Detection • Segmentation • Object Tracking

  3. Mean Shift Theory

  4. Region of interest Intuitive Description Center of mass Mean Shift vector Objective : Find the densest region Distribution of identical billiard balls

  5. Region of interest Intuitive Description Center of mass Mean Shift vector Objective : Find the densest region Distribution of identical billiard balls

  6. Region of interest Intuitive Description Center of mass Mean Shift vector Objective : Find the densest region Distribution of identical billiard balls

  7. Region of interest Intuitive Description Center of mass Mean Shift vector Objective : Find the densest region Distribution of identical billiard balls

  8. Region of interest Intuitive Description Center of mass Mean Shift vector Objective : Find the densest region Distribution of identical billiard balls

  9. Region of interest Intuitive Description Center of mass Mean Shift vector Objective : Find the densest region Distribution of identical billiard balls

  10. Region of interest Intuitive Description Center of mass Objective : Find the densest region Distribution of identical billiard balls

  11. 研究现状 Mean shift算法是Fukunaga于1975年提出的,其含义即偏移的均值向量。随着Mean shift理论的发展,它的含义也发生了变化。现在一般是指一个迭代的步骤,即先算出当前点的偏移均值,移动该点到其偏移均值,然后以此为新的起始点,继续移动,直到满足一定的条件结束。Cheng Yizong定义了一族核函数 ,将Mean shift算法引入到计算机视觉领域。Bradski G R对Mean shift算法进行改进,发展建立了Camshift算法,将Mean shift方法扩展应用到了目标跟踪中来。

  12. Mean shift的基本形式 给定d维空间 中的n个样本点,i=1,…,n,在点 的Mean Shift向量的基本形式定义为: 其中, 是一个半径为h的高维球区域, k表示在这n个样本点中,有k个点落入区域 中.

  13. Mean shift的扩展 核函数: 代表一个d维的欧氏空间, 是该空间中的一个点,用一列向量表示。 的模 。 表示实数域。如果一个函数 存在一个剖面函数 ,即 剖面函数的性质: (1) 是非负的 ; (2) 是非增的; (3) 是分段连续的,并且

  14. Kernel Density EstimationVarious Kernels 在选定的空间中,x1…xn 是有限的样本点。 • 例: • Epanechnikov Kernel • Uniform Kernel • (均匀核函数) • Normal Kernel • (高斯核函数)

  15. 梯度 核密度估计 使用核函数 的形式: 得到 : 窗宽带宽

  16. Computing The Mean Shift Yet another Kernel density estimation ! • Simple Mean Shift procedure: • Compute mean shift vector • Translate the Kernel window by m(x)

  17. Non-Rigid Object Tracking … …

  18. Choose a reference model in the current frame Choose a feature space Represent the model in the chosen feature space … … Current frame Mean-Shift Object TrackingGeneral Framework: Target Representation

  19. Search in the model’s neighborhood in next frame Find best candidate by maximizing a similarity func. Model Candidate … … Current frame Mean-Shift Object TrackingGeneral Framework: Target Localization Start from the position of the model in the current frame Repeat the same process in the next pair of frames

  20. Choose a reference target model Choose a feature space Represent the model by its PDF in the feature space Quantized Color Space Mean-Shift Object TrackingTarget Representation Kernel Based Object Tracking, by Comaniniu, Ramesh, Meer

  21. SimilarityFunction: Mean-Shift Object TrackingPDF Representation Target Model (centered at 0) Target Candidate (centered at y)

  22. candidate model y 0 • A differentiable, isotropic, convex, monotonically decreasing kernel • Peripheral pixels are affected by occlusion and background interference The color bin index (1..m) of pixel x Probability of feature u in model Probability of feature u in candidate Normalization factor Normalization factor Pixel weight Pixel weight Mean-Shift Object TrackingFinding the PDF of the target model Target pixel locations

  23. The Bhattacharyya Coefficient 1 1 Mean-Shift Object TrackingSimilarity Function Target model: Target candidate: Similarity function:

  24. Search in the model’s neighborhood in next frame Find best candidate by maximizing a similarity func. Mean-Shift Object TrackingTarget Localization Algorithm Start from the position of the model in the current frame

  25. Linear approx. (around y0) Mean-Shift Object TrackingApproximating the Similarity Function Model location: Candidate location: Independent of y Density estimate! (as a function of y)

  26. Important Assumption: The target representation provides sufficient discrimination One mode in the searched neighborhood Mean-Shift Object TrackingMaximizing the Similarity Function The mode of = sought maximum

  27. Extended Mean-Shift: using Find mode of Mean-Shift Object TrackingApplying Mean-Shift The mode of = sought maximum Original Mean-Shift: Find mode of using

  28. A special class of radially symmetric kernels: The profile of kernel K Extended Mean-Shift: using Find mode of Mean-Shift Object TrackingAbout Kernels and Profiles

  29. Uniform kernel(单位均匀核函数): Mean-Shift Object TrackingChoosing the Kernel A special class of radially symmetric kernels: Epanechnikov kernel: Extended Mean-Shift:

  30. Solution: Run localization 3 times with different h Choose h that achieves maximum similarity Mean-Shift Object TrackingAdaptive Scale Problem: The scale of the target changes in time The scale (h) of the kernel must be adapted

  31. 谢谢

More Related