1 / 49

Hiroyuki Sako ( ASRC/J-PARC, JAEA ) f or J-PARC HI Collaboration QM2014, Darmstadt

Towards the Heavy-Ion Program at J-PARC. 1. Introduction 2. H eavy ion acceleration scheme 3. Physics goals 4 . E xperimental design 5. Summary. Hiroyuki Sako ( ASRC/J-PARC, JAEA ) f or J-PARC HI Collaboration QM2014, Darmstadt. Introduction. LHC RHIC. SPS.

kalista
Download Presentation

Hiroyuki Sako ( ASRC/J-PARC, JAEA ) f or J-PARC HI Collaboration QM2014, Darmstadt

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Towards the Heavy-Ion Program at J-PARC 1. Introduction2. Heavy ion acceleration scheme3. Physics goals4. Experimental design5. Summary Hiroyuki Sako (ASRC/J-PARC, JAEA) for J-PARC HI Collaboration QM2014, Darmstadt

  2. Introduction LHC RHIC SPS J-PARC will achieve designed beam power with proton beams in a few years 1MW at 3GeV 0.75MW at 30 GeV We started discussing experimental and accelerator schemes for heavy ion program at J-PARC We aim at studies of QCD phase structures in high baryon density regime at J-PARC RHIC low energy scan, NICA, FAIR J-PARC GSI-SIS mB Hadron Seminar @J-ParcTakao Sakaguchi

  3. 400 MeV H-Linac J-PARC Tokai, Japan 3 GeV Rapid Cycling Synchrotron (RCS) 1 MW 50 GeV Main Ring Synchrotron (MR) [30 GeV at present] 0.75 MW Hadron Experimental Hall (HD)

  4. Low and High energy programs “Low energy” program (Linac) for unstable nuclei research • Ion species • Ne, Ar, Fe, Ni, Kr, Xe,…,U • Beam energy • 1- 10 AMeV (U) • Beam current • 10-30pmA • 10ms, 25Hz “High Enegy” Program (50 GeV MR) • Ion species • p, Si, Cu, Au, U AuU • Baryon density • 7.5r0 8.6r0 (JAM ) • Duration at r>5r0 • 4  7 fm/c • Beam energy • 1 - 11.6 AGeV (U) ( • Possibly 19 AGeV() • Rate • 1010-1011 ions per cycle (~a few sec)

  5. Possible accelerator schemes New Ring A New LINAC 3GeV RCS 50 GeV MR B New LINAC

  6. An example of acceleration scheme (with new HI Linac) 11.5AGeV 13AMeV 190AMeV 197Au79+ 197Au32+ 197Au32+ Linac stripping • MR • RCS • RFQ • 7 x IH-DTL • ShortCavities • Multi-turn injection 2 bunch 8 bunch Chopping=60% Efficiency=100% 3.1x1010/pulse 1.0x1010/bunch Au32+, 10pmA CW 25Hz, 0.5ms 8.0x1010/MR cycle (upper limit) Y. Liu, J-PARC HI Meeting

  7. Physics goals • Systematic and precise hadron measurements • Identified particle spectra (K/p,…) • Multi-strange baryons • Correlations (Event-by-event fluctuations, flow, HBT) • Electrons and Muons • Di-lepton spectra of r/w/f • Rare particles • Hypernuclei • Exotic hadrons • L(1405) • H-dibaryon • K-pp • Charm • J/y, D • Photons • Thermal photons from QGP P. Braun-Munzinger, JHI2014 workshop J-PARC Maximum baryon density at freezeout (Randrup, PRC74(2006)047901)

  8. Strange meson/baryons Strangeness enhancement at ~10GeV is connected to high baryon density via hyperons Energy scan with high statistics J-PARC A. Andronic, et al, Nucl. Phys. A 837 (2010) 65

  9. Hypernuclei Maximum yield at J-PARC • coalescence of high-density baryons Hypernuclei S=-3 in HI collisions Closed geometry configuration for projectile region? J-PARC A. Andronic, PLB697 (2011) 203 KEK Report 2000-11 Expression of Interest for Nuclear/Hadron Physics Experiments at the 50-GeV Proton Synchrotron

  10. Particle production rates Beam : 1011 Hz 0.1% target  Interaction rate 108 Hz Centrality trigger 0.1%  100kHz DAQ rate = 100kHz In 1 month experiment: r,w,fee108-109 D,J/Y106(20AGeV) (103(10AGeV)) Hypernuclei 105 -1010 Hypernuclei Dilepton Charm Ref: HSD calculations in FAIR Baseline Technical Report (Mar 2006) A. Andronic, PLB697 (2011) 203

  11. Experimental requirements • High rate capability • Fast detectors • Silicon trackers, MPGD (e.g. GEM) trackers, … • Extremely fast DAQ • >= 100kHz • High granularity Pixel size < 3x3mm2 (at 1m, q<2deg, 10% occupancy) • Large acceptance (~4p) • Multiplicity for e-b-e fluctuations • Backward physics (target fragment region)

  12. TOF (5m from target) Muondipole PreliminarySpectrometer Design Muon tracker Top View TOF Dipole (BL=1.5Tm) RICH Solenoid (BL=1Tm) 30o Silicon pixel/strip trackers ZCAL 10o 2m Multiplicity counter target GEM trackers RICH Aerogel +gas 1.5m 2m 1m 0.3m 1m hadron-ID (q<117o) e-ID : q<30o m-ID : q<25o 20o = mid rapidity Centrality MC + ZCAL GEM Trackers EMCAL

  13. Particle-ID methods e-pseparation RICH (C5F12) p<3.4GeV/c (20mrad) m – p separation • p<0.8 GeV/c TOF with 30ps (MRPD) in 5 m TOF • p=0.8-1.5GeV/c RICH (Aerogel) • p>1.5 GeV/c (20mrad) Fe absorbers + Trackers EMCAL (e,gID) PbWO4 15X0(14cm) Dual radiator RICH (HERMES type)

  14. GEANT4 simulation • JAM model U+U (10AGeV) • Full physics processes

  15. Simulation results(Preliminary) Momentum vs m2(dipole spectrometer) pT (GeV/c) p+ p K+ Charge x p (GeV/c) K- p- rapidity M2 (GeV/c2) Acceptance TOF Resolution 50ps Position resolution Silicon trackers : 14-23mm GEM trackers: 0.2-0.5mm dp/p=1.3% (solenoid) 1% * p (GeV/c) (dipole)

  16. Simulated di-electron spectrum(preliminary) p0 Based on pi0 spectra ofJAM Other hadrons mT-scaled b<1fm (0.25% centrality) Momentum resolution 2% Electron efficiency 50% No detector response 1011 events ⇔100k events/sec x 1 month running w r f Calculations by T. Gunji and T. Sakaguchi

  17. Summary • A heavy ion program at J-PARC is under discussion • Preliminary experimental setup has been designed • Acceleration schemes are under design Prospects • Design of accelerators and experiments • A first complete design by Mar 2015 (White paper) • Detector R & D • J-PARC E16 (electron/hadron in p+A) • J-PARC proton beams (1010 Hz) • Starting in 2016 • We wish international collaboration

  18. J-PARC HI Collaboration S. Nagamiya (JAEA/KEK/RIKEN) H. Sako, K. Imai, K. Nishio, S. Sato (ASRC/JAEA) H. Harada, P. K. Saha, M. Kinsho, J. Tamura, (J-PARC/JAEA) K. Ozawa, Y. Liu (J-PARC/KEK) T. Sakaguchi (BNL) K. Shigaki(Hiroshima Univ.) T. Chujo (Univ. of Tsukuba) T. Gunji (CNS, Univ. of Tokyo) M. Kaneta (Tohoku Univ.)

  19. Backup

  20. U+U at 10 AGeV(Preliminary) Acceptance

  21. PID and momentum (Preliminary) Momentum vs m2 (with TOF) p Charge*P (GeV/c) p+ K+ TOF Resolution 50ps Position resolution Silicon trackers : 14-23mm GEM trackers: 0.2-0.5mm dp/p 1.3% (solenoid) 1%/GeV (dipole) pbar K- p- M2 (GeV/c2) Momentum resolution Dp/p P(GeV/c)

  22. Three Extreme Region on Chart of Nuclei Search for Heaviest N=Z Nuclei ( R. Grzywacz ) Search for Super-heavy Nuclei ( S. Heinz ) Search for Heaviest N=126 Nuclei ( K. Nishio) SHE β-stability line 150 N=126 120 114 100 184 N=Z Z 82 50 50 126 28 82 20 50 28 200 50 100 150 N

  23. Search for Super-Heavy Nuclei 238U + 248Cm (6MeV/u ) Neutrons 248Cm 238U by V. Zagrebaev (FLNR) Protons

  24. Search for Heaviest N=126 Nuclei 126 α Proton Drip Line Fm 100 EC/ β+ Es β- Cf 98 226Fm sf Bk Cm 96 Am Protons α Pu 94 220Pu Np T1/2 > 1μs U U α 92 Pa Th 90 Th α Ac 88 82Kr + 140Ce → 222Pu* → 220Pu 82Kr + 144Nd → 224Cm* → 222Cm 82Kr + 144Sm → 226Cf* → 224Cf 120 125 130 135 140 Neutrons New Region Predicted by H. Koura, ASRC/JAEA

  25. m/p separation with RICH P<0.8GeV/c • TOF (MRPD) • 3s separation st=20ps , L=3m 0.8<p<1.5GeV/c RICH(aerogel) P>1.5 GeV/c Fe absorbers +trackers

  26. Required pixel size at 10% occupancy at 1m from the target

  27. Heavy-ion programs in the world References RHIC: A. Fedotov, LEReC Review, 2013 FAIR: FAIR Baseline Technical Review, C. Strum, INPC2013, Firenze, Italy; S. Seddiki, FAIRNESS-2013 NICA : A. Kovalenko, Joint US-CERN-Japan-Russia Accelerator School, Shizuoka, Japan, 2013

  28. Baryon densityfrom light to heavy ions r/r0 10 AGeV/c Au+AuU+U • Baryon density • 7.5r0 8.6r0 • Duration at r>5r0 • 4  7 fm/c U beam is necessary at J-PARC! JAM model Y. Nara, et al, Phys. Rev. C61,024901(1999)

  29. U+U at 5 AGeV/c

  30. U+U at 1 AGeV/c

  31. See Presentation by Masashi Kaneta KenIchi Imai, J-PARC HI meeting (2013/4/24)

  32. Centrality Trigger Narrow centrality cut taking advantage of high rate beams • Ultra-central • Many narrow Centrality ranges Impact parameter resolution ~0.62 fm

  33. Beam transport lines to MLF to MR RCS Injection system of RCS for Au beam H V Ring twiss(bx,by) at the ext. straight HI inj. Ext. KMs Ext. septa QDL QDX QFL QFM Original H-inj. Candidate HI Injection-BT H. Harada

  34. Rapidity and pt distributions 10AGeV/c 5AGeV/c 1AGeV/c

  35. Dileptons at J-Parc energy Axel Drees • Landscape for J-Parc • Intermediate Mass Range • DDbar is very hard • QGP thermal radiation is on • Low Mass Range • in-medium modification of vector mesons (link to chiral symmetry restoration) • Thermal radiation T. Sakaguchi@J-Parc HI workshop

  36. Photon feasibility study • 0.1 T events 1<y<2, b<1fm • Blue: pi0, Black: eta, Red: decay photons from pi0 and eta • Direct photon signal is assumed to be 2% of background photons • Statistical error only • No hadron contamination, photon efficiency is taken into account. T. Sakaguchi@J-Parc HI workshop

  37. γ e- e+ e+ π0 e+ e- π0 π0 γ e- γ Electron feasibility study • Huge background is a problem • Very small jet-originated background • No cross-pair • No charm contribution • Base on pi0 spectra obtained from JAM event generator • Other hadrons mT-scaled • 1<y<2 (in lab), b<1fm (0.25% centrality) • 0.1T events (by one month running) T. Sakaguchi@J-Parc HI workshop

  38. Beam Energy Scan of dielectrons • LMR excess observed for all energies • systematic measurement of excess • Model calculations appear to provide robust description from RHIC down to SPS energies • Measurements consistent with in-medium ρbroadening • expected to depend on total baryon density T. Sakaguchi@J-Parc HI workshop

  39. Photon calculation • Using UrQMD, low pT photons are calculated at FAIR energy • arxiv:1211.2401 • Bremsstrahlungpp -> ppg is dominant • Elliptic flow is estimated of the order of 1-2% T. Sakaguchi@J-Parc HI workshop

  40. Centrality cut

  41. Solenoid spectrometer B=2T • Pixel size (<6x6mm2 at 1m at q>10o) pTcut=0.26GeV/c

  42. Dipole spectrometer (new) B=2T • Pixel size (<6x6mm2 at 1m at q<10o)

  43. U+U at 5 AGeV/c Mid-rapidity ~ 25 deg ynn=1.2

  44. U+U at 1 AGeV/c Mid-rapidity ~ 30 deg ynn=0.5

  45. Summary of acceptance and pixel size Acceptance Required pixel size at 10% occupancy at 1m from the target

  46. Acceptance(p+) q=30o q=117o q=2o

  47. Acceptance (K+) q=30o q=100o q=2o

More Related