590 likes | 761 Views
“Twee halen - een betalen” Si nano-photovoltaics. Tom Gregorkiewicz. Van der Waals-Zeeman Institute, University of Amsterdam. Absorption of solar energy is a natural process. Preferred solutions for energy. Use processes occurring in nature - do not produce “new” components
E N D
“Twee halen - een betalen” Si nano-photovoltaics Tom Gregorkiewicz Van der Waals-Zeeman Institute, University of Amsterdam
Absorption of solar energy is a natural process Preferred solutions for energy • Use processes occurring in nature • - do not produce “new” components • (nuclear waste, CFC, …) • - CO2, CO, SO2 do occur in nature but in small quantities (e.g. burning of wood) • The scale needs to be “small” (best negligible) when compared to those occurring naturally PV “shapes” this natural process in the way useful to men, using only a (very) small part Van der Waals-Zeeman Institute, University of Amsterdam
Solar power: 120.000 TW Calibrating the energy needs Daily food consumption: 2000 cal/day 100 W ~ 1 kW 2 kW pp 13 TW (2010) 28 TW (2050) ~0.02% of the total is enough to power our civilization! Van der Waals-Zeeman Institute, University of Amsterdam
light low/high temperature heat light electricity Main solar energy conversion options Van der Waals-Zeeman Institute, University of Amsterdam
light low/high temperature heat light electricity light chemical energy (solar fuels, art. photosynthesis) Main solar energy conversion options Van der Waals-Zeeman Institute, University of Amsterdam
Don’t worry Mr. President, solar will be economical in 5 years! I can’t believe he said that. Oil crisis of the 1970’s Jimmy Carter at SERI (now NREL) May 5, 1978 Van der Waals-Zeeman Institute, University of Amsterdam
“Global warming” crisis Barack Obama at Nellis AFB May 2009 Van der Waals-Zeeman Institute, University of Amsterdam
Solar electricity solutions • Indirect conversion: light-high T heat-electricity • Solar thermal energy: photons-to-phonons-to-electrons • - without energy storage • - with energy storage Van der Waals-Zeeman Institute, University of Amsterdam
Solar thermal power Van der Waals-Zeeman Institute, University of Amsterdam
Solar thermal power Van der Waals-Zeeman Institute, University of Amsterdam
Solar electricity solutions • Indirect conversion: light-high T heat-electricity • Solar thermal energy: photons-to-phonons-to-electrons • - without energy storage • - with energy storage • Direct conversion:light-to-electricity • Photovoltaics: photons-to-electrons • - without light concentration • - with light concentration Van der Waals-Zeeman Institute, University of Amsterdam
Photovoltaic cell top metal contact load active material (with asymmetry for charges) bottom metal contact mobile negative charge mobile positive charge Van der Waals-Zeeman Institute, University of Amsterdam Courtesy W. Sinke, ECN
Researchers at Bell Labs, N.J. (USA) 1953, firstphotovoltaic solar cells based on silicon ( 5%) PV history In 1954, the U.S. News & World Report wrote : …..one day such silicon strips……“may provide more power than all the world’s coal, oil and uranium” Van der Waals-Zeeman Institute, University of Amsterdam
17th March 1958: The Vanguard 1 satellitewith solar panels - 0.1 watt peak power – is put onto orbit PV history Van der Waals-Zeeman Institute, University of Amsterdam
Polycrystalline silicon – a cheap & easy-to-make alternative Van der Waals-Zeeman Institute, University of Amsterdam
PV application limits? Van der Waals-Zeeman Institute, University of Amsterdam
Source: Photon International March 2010 Van der Waals-Zeeman Institute, University of Amsterdam
Price development 22% price decrease for every doubling of cumulative production 1979 wafer Si silicon feedstock shortage 2007 Thin film 2009 2009 Source: EPIA, October 2009 Van der Waals-Zeeman Institute, University of Amsterdam
Over 90% of today’s PV modules are based on Crystalline Silicon Excellent performance modules: ~20% lab: up to ~25% Current status PV Van der Waals-Zeeman Institute, University of Amsterdam
Silicon and light • indirect bandgap • low emission/absorption rates • (at low energies) Van der Waals-Zeeman Institute, University of Amsterdam
PV conversion – basic concept recombination X gap energy light X X heat generation Van der Waals-Zeeman Institute, University of Amsterdam
PV conversion loses X X Van der Waals-Zeeman Institute, University of Amsterdam
Shockley-Queisser limit Conversion efficiency maximum for single junction PV cell with Egap=1.1 eV (≈ 31 %) Van der Waals-Zeeman Institute, University of Amsterdam
Optimal bandgap energy Abundant Mechanically strong High mobilities possible Si for photovoltaics Van der Waals-Zeeman Institute, University of Amsterdam
Manipulate band-structure Light management: waveguiding, cloaking, multiple reflection, dispersing Si nanowires Si nanocrystals Quantum cutting and pasting “Smart” solutions for Si PV TGG TGG TGG Van der Waals-Zeeman Institute, University of Amsterdam
Nanocrystals (NCs) Bandstructure modification induced by quantum confinement Bands →quantized energy levels Relaxation of k-vector conservation for indirect bandgap Tuning optical properties SiNC 4.3 nm Silicon
Si Nanocrystals in SiO2 Paillard et al., Tolouse Van der Waals-Zeeman Institute, University of Amsterdam
Si NC photoluminescence SiNC PL CB VB Van der Waals-Zeeman Institute, University of Amsterdam
Si NC photoluminescence SiNC PL CB VB Van der Waals-Zeeman Institute, University of Amsterdam
Si NC photoluminescence SiNC Van der Waals-Zeeman Institute, University of Amsterdam
Si NC photoluminescence SiNC PL CB Auger VB Van der Waals-Zeeman Institute, University of Amsterdam
Si NC PL saturation Van der Waals-Zeeman Institute, University of Amsterdam
Si nanocrystals • photon convertors: • size-tunable energy • photon limiters • only one photon out Hot electrons are not used! Van der Waals-Zeeman Institute, University of Amsterdam
Using “hot electrons”: Cutting and emitting photons with Si-NCs
PL from SiNCs in SiO2 Van der Waals-Zeeman Institute, University of Amsterdam
λexc=323 nm f = 3.8 MHz ~2 ps PL •370 ≤ λdet ≤ 700 nm •τresolution ~25 ps MCM PMT PL from SiNCs d=4.5 nm τ1≈25 ps τ2≈100 ps ~ns ~μs Hot PL Excitonic recombination O-related PL
Hot PL for all the samples Van der Waals-Zeeman Institute, University of Amsterdam
Theoretical model Si Nanocrystal Direct Indirect 1.17 eV 3.32 eV Van der Waals-Zeeman Institute, University of Amsterdam
Pulsed vs. semi-cw excitation Pulsed <Nexc><1 ~2 ps cooling 1 – 10 ps ~ns 420 nm ~μs NIR <Nexc>>1 Semi-cw ~5 ns Auger 10 – 100 ps ~ns 420 nm ~μs NIR
hot PL s-PL hot PL s-PL ≈ 5 ≈ 1 Relative efficiency “hot” PL in Si NC 1000 stronger than in bulk Si enhanced emission and absorption in the visible W.D.A.M. de Boer et al. Nature Nanotechnology 2010 Van der Waals-Zeeman Institute, University of Amsterdam
Absolute QE of Si-NCs PL Solid state sample: SiO2:Si-NCs Experimental setup Colloidal sample: SiNCs in ethanol • HF chemical • etching: po-Si • suspended in • ethanol Van der Waals-Zeeman Institute, University of Amsterdam
Nem Nabs η = Relative quantum efficiency Q.E. for different wavelengths in visible and near UV Definition relative quantum efficiency: • η is constant up to a photon energy threshold of Ethreshold ≈ 2Egap • For larger photon energies a second excitation mechanism takes place Van der Waals-Zeeman Institute, University of Amsterdam
Quantum cutting with Si-NCs Eexc≥ 2Egap Space-separated quantum cutting (SSQC) Multi-exciton generation (MEG) D. Timmerman et al., Nature Photonics (2008)