1 / 23

Video Streaming over the Internet

Video Streaming over the Internet. 98/11/25 정승훈 shjeong@mmlab.snu.ac.kr. Contents. Introduction Architecture of Adaptive Video Streaming Congestion Detection Rate Adjustment Schemes Examples Conclusion. Introduction. Video Streaming Problems Network Protocol Issues

karlyn
Download Presentation

Video Streaming over the Internet

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Video Streaming over the Internet 98/11/25 정승훈 shjeong@mmlab.snu.ac.kr

  2. Contents • Introduction • Architecture of Adaptive Video Streaming • Congestion Detection • Rate Adjustment Schemes • Examples • Conclusion

  3. Introduction • Video Streaming Problems • Network • Protocol Issues • Congestion control • Receiver capability • receiver’s video playback capability • Server capability • contention for CPU and I/O resources • QoS • SNR • Displayed Frame Rate

  4. Introduction • Assumptions • Clients have heterogeneous network capacity and processing power • Large numbers of clients may access the server simultaneously • Low startup playback latency • The server maintains a large number of different video streams • The server and clients are connected through the Internet where the dominant competing traffic is TCP-based.

  5. Introduction • Goals • well-behaved and TCP-friendly streaming • utilize a fair share of bandwidth • maximize the overall quality of delivered stream • minimize the storage requirement at the server and the client • minimize the playback delay • minimize processing requirements at the server

  6. General Architecture Server Q factor Buffer Internet Client Encoder rate controller Video source Feedback Information

  7. System Model Client Video Source V decoder A decoder Server Synch. control buffer V buffer A buffer rate controller Feedback collection DeMux / Monitor buffer UDP TCP UDP TCP IP IP Internet

  8. Congestion Detection • Congestion Factors • Packet receiving rate • Packet Loss Ratio • Packet End-to-end Delay • Packet Interarrival Jitter • ACK / NACK based • Using packet receiving rate • Receiver-oriented • Server-oriented

  9. Congestion Detection • ACK / NACK based • Columbia Univ. - Dynamic Rate Shaping • using TCP congestion control • client only sends ACK or NACK • server detects network congestion from ACK/NACK • Using Receiving Rate • Bamba - IBM ‘97 • Receiver monitors packet receiving buffer • calculates packet receiving rate • sends receiving rate to the server

  10. Congestion Detection • Receiver-oriented • Receiver monitors receiving buffer • collecting congestion factors • determines network congestion degree • sends congestion degree to the server • server regulate sending rate in accordance with congestion degree

  11. Congestion Detection • Server-oriented • ATC, INRIA • RTP/RTCP based • receiver collects Feedback information • highest sequence number received • the number of packet lost • packet interarrival jitter • timestamps • sends Feedback info. by using RTCP packet. • server determines network congestion.

  12. Rate Adjustment • Encoder-level rate shaping • regulates quantization factor • Frame dropping • Macroblock filtering • Quantization filtering • discarding DCT coefficients • Layered Coding • Playback dilation

  13. Encoder-level rate shaping • Model • INRIA (Bolot ‘98) • real-time encoder • adjusts the maximum output rate of the encoder • linear increase / multiplicative decrease • Congestion if loss rate > 5% • NoCongestion if loss rate < 2% • if Congestion • max_rate = max(max_rate/GAIN, MIN_RATE) • else if NoCongestion • max_rate = min(max_rate+INC, MAX_RATE)

  14. Frame Dropping • Model • StreamWorks, OGIST • server determines congestion degree • server adjusts frame rate by frame dropping frame rate send pattern 2.5 I I 5.0 I P I P 10.0 I P P P I P P P 15.0 I PB P PB I PB P PB 20.0 I BP BP BP BI BP BP BP B 30.0 IBBPBBPBBPBBIBBPBBPBBPBB

  15. Macroblock Filtering • block dropping • Macroblock중 일부를 주기적으로 제거 • Client는 인접 Macroblock으로 대치. • Feature-oriented block dropping

  16. Quantization Filtering • SNR adaptation • video quality를 떨어뜨려 Data 크기를 줄인다. • DCT coefficient를 인위적으로 제거 • DCT coefficient 를 표현하는 비트 수를 줄임.

  17. Layered Coding • Off-line transcoding • Video source를 video quality에 따라 여러 계층으로 나누어 Encoding. • Frame dropping, Macroblock filtering, Quantization filtering 모두 적용. • 서버는 congestion degree 또는 요구되는 QoS에 맞는 Layer를 동적으로 선택하여 전송. • Architecture Tech. Co. • Adaptive Video Streaming - LCN ‘97 • University of Southern California ‘98

  18. Playback Dilation • Client의 Playback rate를 줄이는 기법 • Receive buffer가 underflow threshold 를 넘는 경우 • client의 system capability가 떨어질 경우. • Packet buffering delay를 인위적으로 늘려서 Client의 버퍼를 일정한 크기로 유지.

  19. Examples • Berkeley Continuous Media Player ‘92 • software feedback mechanism • playback dilation • OGIST ‘97 • user specification of presentation quality • frame rate, simple QoS • Frame dropping • StreamWorks • Session 설정시 frame rate 결정 • Frame dropping

  20. Examples • Architecture Tech. Co. • Adaptive Video Streaming • QoS Adaptation • Server, Network, Client • Status Report (Feedback Information) • Layered Coding • Off-line Video Transcoding • Adaptation table

  21. Adaptation Table

  22. Further Issues • Congestion Prediction ? • Multicast Issues • Feedback Explosion problem • heterogeneity problem • Video Streaming over DiffServ • Error propagation of lost packet • Early packet discarding

  23. Conclusion • Video Streaming over the Internet • Congestion Detection • Rate Adjustment • Related Works • Further Issues

More Related