230 likes | 404 Views
POINTERS. Outline. Introduction Pointer Variable Definitions and Initialization Pointer Operators Calling Functions by Reference Using the const Qualifier with Pointers Pointer Expressions and Pointer Arithmetic Relationship between Pointers and Arrays Arrays of Pointers .
E N D
POINTERS EKT 120:Computer Programming
Outline • Introduction • Pointer Variable Definitions and Initialization • Pointer Operators • Calling Functions by Reference • Using the const Qualifier with Pointers • Pointer Expressions and Pointer Arithmetic • Relationship between Pointers and Arrays • Arrays of Pointers EKT 120:Computer Programming
Introduction • Pointer is the address (i.e. a specific memory location) of an object. • It can refer to different objects at different times. • Pointers are used in C programs for a variety of purposes: • To return more than one value from a function(using pass by reference) • To create and process strings • To manipulate the contents of arrays and structures • To construct data structures whose size can grow or shrink dynamically EKT 120:Computer Programming
iNum piNum iNum 7 7 Pointer Variable Definitions and Initialization • Pointer variables • Contain memory addresses as their values • Normal variables contain a specific value (direct reference) • Pointer contains an address of a variable that has a specific value (indirect reference) • Indirection – referencing a pointer value EKT 120:Computer Programming
Pointer Variable Definitions and Initialization • Pointer definitions • * used with pointer variables int *piNum; • Defines a pointer to an int (pointer of type int *) • Multiple pointers require using a * before each variable definition int *piNum1, *piNum2; • Can define pointers to any data type • Initialize pointers to 0, NULL, or an address • 0 or NULL– points to nothing (NULL preferred) • int *piNum = NULL; or int *piNum = 0; EKT 120:Computer Programming
piNum iNum iNum 7 piNum Address of iNum is value of piNum 500000 600000 600000 7 Pointer Operators • Symbol & is called address operator • Returns address of operand int iNum = 7; int *piNum; piNum = &iNum; /* piNum gets address of iNum */ piNum “points to” iNum EKT 120:Computer Programming
Pointer Operators • Symbol * is called indirection/dereferencing operator • Returns a synonym/alias of what its operand points to • *piNum returns iNum (because piNum points to iNum) • * can also be used for assignment • Returns alias to an object *piNum = 10; /* changes iNum to 10 */ show pictures!! • Dereferenced pointer (operand of *) must be an lvalue (no constants) • * and & are inverses • They cancel each other out EKT 120:Computer Programming
Sample program #include <stdio.h> int main() { int iNum; int *piNum; int iNum1=5; iNum = 7; printf("number = %d\n", iNum); piNum = &iNum; printf(“piNum points to iNum whereby the value is = %d\n",*piNum); printf("Address of piNum : %d Contents of piNum : %d\n", &piNum, piNum); printf("Address of iNum : %d\n\n", &iNum); *piNum = 15; printf("Dereferencing pointer, *piNum = %d\n", *piNum); iNum = iNum + iNum1; printf(“iNum = %d\n”, iNum); printf("*piNum = %d\n", *piNum); printf("*piNum + iNum1 = %d\n", *piNum + iNum1); return 0; } number = 7 piNum points to iNum whereby the value is = 7 Address of piNum : 1245060 Contents of piNum : 1245064 Address of iNum : 1245064 Dereferencing pointer, *piNum = 15 iNum = 20 *piNum = 20 *piNum + iNum1 = 25 EKT 120:Computer Programming
Calling Functions by Reference • Call by reference with pointer arguments • Passes address of argument using & operator • Allows you to change actual location in memory • Arrays are not passed with ‘&’ because the array name is already a pointer • * operator • Used as alias or nickname for variable inside of function void fnFun1 (int *piNumber) { *piNumber = 2 * (*piNumber); } • *piNumberused as nickname for the variable passed EKT 120:Computer Programming
#include <stdio.h> #include <string.h> char fnRead(); void fnFindCountVC(char, int*, int*); void fnPrint(int,int); int main() { char cCh, cChoice; int iCountV=0, iCountC=0; do { cCh = fnRead(); fnFindCountVC(cCh, &iCountV, &iCountC); printf("Do you want to continue? "); scanf("%c", &cChoice); getchar(); }while((cChoice == 'y') ||(cChoice =='Y')); fnPrint(iCountV,iCountC); return 0; } char fnRead() { char cCh1; printf("Enter character : "); scanf("%c", &cCh1); getchar(); return(cCh1); } void fnFindCountVC(char cCh1, int *piVowel, int *piConsonant) { switch(cCh1) { case 'A': case 'a': case 'E': case 'e': case 'I': case 'i': case 'O': case 'o': case 'U': case 'u': *piVowel = *piVowel +1;break; default: *piConsonant = *piConsonant + 1; } } void fnPrint(int iVowel, int iConsonant) { printf("Number of vowel : %d\n", iVowel); printf("Number of consonant : %d\n", iConsonant); } Enter character : f Do you want to continue?y Enter character : I Do you want to continue?y Enter character : k Do you want to continue?n Number of vowel : 1 Number of consonant : 2 Remember..last time Functions that “return” more than one value i.e. arguments are passed by reference EKT 120:Computer Programming
#include <stdio.h> const int iArraySize = 10; void fnInitializeArray (int aiX[], int iSizeX); void fnFillArray (int aiX[], int iSizeX); void fnPrintArray (const int aiX[], int iSizeX); int fnSumArray (const int aiX[], int iSizeX); int fnIndexLargestElement (const int aiX[], int iSizeX); void fnCopyArray (const int aiX[], int aiY[], int iLength); int main() { int aiListA [iArraySize] = {0}; int aiListB [iArraySize]; fnPrintArray (aiListA, iArraySize); fnInitializeArray (aiListB, iArraySize); fnPrintArray (aiListB, iArraySize); fnFillArray (aiListA, iArraySize); fnPrintArray (aiListA, iArraySize); fnSumArray (aiListA, iArraySize); fnCopyArray (aiListA, aiListB, iArraySize); fnPrintArray (aiListB, iArraySize); return 0; } Remember…last time void fnInitializeArray (int aiX[ ], int iSizeX) { int iCounter; for (iCounter = 0; iCounter < iSizeX; iCounter++) aiX[iCounter] = 0; } EKT 120:Computer Programming
Using the const Qualifier with Pointers • const qualifier • Variable cannot be changed • Use const if function does not need to change a variable • Attempting to change a const variable produces an error • const pointers • Point to a constant memory location • Must be initialized when defined • int *const piMyPtr = &iX; • Type int *const– constant pointer to an int • const int *piMyPtr = &iX; • Regular pointer to a const int • const int *const piPtr = &iX; • const pointer to a const int • iX can be changed, but not *piPtr EKT 120:Computer Programming
Pointer Expressions and Pointer Arithmetic • Arithmetic operations can be performed on pointers • Increment/decrement pointer (++ or --) • Add an integer to a pointer( + or += , - or -=) • Pointers may be subtracted from each other • Operations meaningless unless performed on an array EKT 120:Computer Programming
aiV[0] aiV[1] aiV[2] aiV[4] aiV[3] Pointer Expressions and Pointer Arithmetic • 5 element int array on machine with 4 byte ints • piVPtr points to first element aiV[ 0 ] • at location 3000 (piVPtr = 3000) • piVPtr += 2; sets piVPtr to 3008 • piVPtr points to aiV[ 2 ] (incremented by 2), but the machine has 4 byte ints, so it points to address 3008 location 3000 3004 3008 3012 3016 EKT 120:Computer Programming pointer variable piVPtr
Pointer Expressions and Pointer Arithmetic • Subtracting pointers • Returns number of elements from one to the other. If piVPtr2 = &aiV[ 2 ]; piVPtr = &aiV[ 0 ]; • piVPtr2 - piVPtr would produce 2 • Pointer comparison ( <, == , > ) • See which pointer points to the higher numbered array element • Also, see if a pointer points to 0 EKT 120:Computer Programming
Pointer Expressions and Pointer Arithmetic • Pointers of the same type can be assigned to each other • If not the same type, a cast operator must be used • Exception: pointer to void (type void *) • Generic pointer, represents any type • No casting needed to convert a pointer to void pointer • void pointers cannot be dereferenced EKT 120:Computer Programming
#include <stdio.h> int main() {int *piVPtr; int *piVPtr2; int aiV[5] = {10,20,30,40,50}; int iTemp; int *piP, *piQ; piVPtr= aiV; printf("Address of piVPtr : %d Contents of piVPtr : %d\n", &piVPtr, piVPtr); printf("Address of aiV[0] : %d\n", &aiV); piVPtr +=2; printf("Address of piVPtr + 2: %d\n", piVPtr); piVPtr +=2; printf("Address of piVPtr + 4: %d\n", piVPtr); piVPtr2=&aiV[2]; piVPtr=&aiV[0]; iTemp=piVPtr2-piVPtr; printf("Contents of iTemp : %d\n", iTemp); piP=piQ; printf("Contents of piP : %d piQ : %d\n", piP, piQ); return 0;} Address of piVPtr : 1245064 Contents of piVPtr : 1245020 Address of aiV[0] : 1245020 Address of piVPtr + 2: 1245028 Address of piVPtr + 4: 1245036 Contents of temp : 2 Contents of piP : 2147323904 piQ : 2147323904 Example of Pointer Operation EKT 120:Computer Programming
The Relationship between Pointers and Arrays • Arrays and pointers are closely related • Array name like a constant pointer • Pointers can do array subscripting operations • Define an array aiB[5]and a pointer piBPtr • To set them equal to one another use: piBPtr = aiB; • The array name (aiB) is actually the address of first element of the array aiB[ 5 ] piBPtr = &aiB[0]; • Explicitly assigns piBPtr to the address of first element of aiB EKT 120:Computer Programming
The Relationship between Pointers and Arrays • Element aiB[3] • Can be accessed by *(piBPtr + 3) • Where * is the offset. Called pointer/offset notation • Can be accessed by piBPtr[3] • Called pointer/subscript notation • piBPtr[3] same as aiB[3] • Can be accessed by performing pointer arithmetic on the array itself *(aiB + 3) EKT 120:Computer Programming
Address of piBPtr : 1245064 Contents of piBPtr : 1245016 Address of aiB : 1245016 Contents of aiB[0]:10 10 10 piBPtr points to aiB[0] = 10 I am accessing element aiB[3]!! Let see how many ways I can do it aiB[3] = 40 *(piBPtr + 3) = 40 *(aiB + 3) = 40 piBPtr[3] = 40 aiB[0] = 10 aiB[1] = 20 aiB[2] = 30 aiB[3] = 40 aiB[4] = 50 aiB[5] = 0 aiB[6] = 0 aiB[7] = 0 aiB[8] = 0 aiB[9] = 0 Example #include <stdio.h> int main() { int *piBPtr ;int iIndex; int aiB[10]={10,20,30,40,50}; piBPtr = aiB; printf("Address of piBPtr : %d Contents of piBPtr : %d\n", &piBPtr, piBPtr); printf("Address of aiB : %d Contents of aiB[0]:%d %d %d\n", &aiB, aiB[0], *piBPtr, *aiB); printf(“piBPtr points to aiB[0] = %d\n", *piBPtr); printf("\nI am accessing element aiB[3]!!\nLet see how many ways I can do it\n"); printf(“aiB[3] = %d\n", aiB[3]); printf("*(piBPtr + 3) = %d\n", *(piBPtr + 3)); printf("*(aiB + 3) = %d\n", *(aiB + 3)); printf(“piBPtr[3] = %d\n\n", piBPtr[3]); for(iIndex=0;iIndex<10;iIndex++) printf(“aiB[%d] = %d\n", iIndex, *(piBPtr+iIndex)); return 0; } EKT 120:Computer Programming
Arrays of Pointers • Arrays can contain pointers • For example: an array of strings char *acSuit[4] = {“Hearts”,“Diamonds”,“Clubs”,“Spades”}; • Strings are pointers to the first character • char *– each element of acSuit is a pointer to a char • The strings are not actually stored in the array acSuit, only pointers to the strings are stored EKT 120:Computer Programming
’\0’ ’\0’ ’\0’ ’\0’ ’o’ ’n’ ’a’ ’s’ ’d’ ’u’ ’d’ ’b’ ’a’ ’t’ ’i’ ’D’ ’s’ ’H’ ’r’ ’e’ ’s’ ’a’ ’m’ ’e’ ’p’ ’C’ ’l’ ’S’ ’s’ acSuit[0] acSuit[1] acSuit[2] acSuit[3] Arrays of Pointers • acSuit array has a fixed size, but strings can be of any size EKT 120:Computer Programming
#include <stdio.h> #define N 5 int main() { char *acStudentName[N]; int iIndex; for(iIndex=0;iIndex<5;iIndex++) { printf("Enter student[%d] name : ", iIndex); scanf("%s", acStudentName + iIndex); printf("You just entered :\n%s\n", acStudentName + iIndex); } return 0; } Enter student[0] name : ali You just entered : ali Enter student[1] name : abu You just entered : abu Enter student[2] name : cheah You just entered : cheah Enter student[3] name : dali You just entered : dali Enter student[4] name : gheeta You just entered : gheeta Example EKT 120:Computer Programming