1 / 53

Logic and Digital Circuits: from Practice to Theory

Logic and Digital Circuits: from Practice to Theory. Gérard Berry http://www-sop.inria.fr/members/Gerard.Berry/. INRIA Sophia-Antipolis Collège de France, 2007-2008 and 2009-2010 Logic to the Rescue , Nancy, July 22 nd , 2011. Digital Circuits. PC microprocessors

kieve
Download Presentation

Logic and Digital Circuits: from Practice to Theory

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Logic and Digital Circuits: from Practice to Theory Gérard Berry http://www-sop.inria.fr/members/Gerard.Berry/ INRIA Sophia-Antipolis Collège de France, 2007-2008 and 2009-2010 Logic to the Rescue, Nancy, July 22nd, 2011

  2. Digital Circuits PC microprocessors telephones, DVD, TV, GPS,... SoC = Systems on Chip Sorrce Intel G. Berry, Nancy

  3. Combinational Gates and Circuits c a a b b and or xor mux not(a and b) (not a)and b mux(c,a,b) =(c and a) or ((not c) and b) s sa xor b xor c a b r c s(a and b) or(b and c) or(c and a) full adder G. Berry, Nancy

  4. GO Combinational propagation 1 REQ OK 0 PASS TRY GO 1 GET_TOKEN PASS_TOKEN Since the network is acyclic, outputs stabilize in bounded time if inputs are kept constant Stabilization time is determined by the critical path G. Berry, Nancy

  5. The Ripple-Carry Adder c= 0 s + 0 a 0 0 + b 0 c 1 Fornbits timen s + a 1 + 1 b 1 c 2 s + a 2 2 + b 2 c 3 G. Berry, Nancy

  6. n n+1 0..n-1 s[0..n-1] a[0..n-1] n n+1 0..n-1 b[0..n-1] s’[0..n-1] n n n+1 n 0 1 s[n..2n] a[n..2n-1] n+1 n b[n..2n-1] 0 1 s’[n..2n] The von Neumann Logarithmic Adder G. Berry, Nancy

  7. The von Neumann Logarithmic Adder For n bits time log(n) G. Berry, Nancy

  8. The Register a a r ck ck reg(a) r a r a a0, a1, a2, ... r 0, a0, a1, a2, ... a r a a0, a1, a2, ... r 1, a0, a1, a2, ... G. Berry, Nancy

  9. GO clock Sequential sampling 1 REQ OK 0 PASS TRY GO 1 GET_TOKEN PASS_TOKEN tick ! tick ! G. Berry, Nancy

  10. GO clock Sequential sampling 1 0 REQ OK 0 0 PASS TRY GO 1 0 GET_TOKEN PASS_TOKEN tick ! tick ! G. Berry, Nancy

  11. The Serial Adder 6 19 a ...00110 s ...10011 b ...01101 r 13 Serial Adder See the marvelous use of 2-adic numbers in “On Circuits and Numbers” by Jean Vuillemin G. Berry, Nancy

  12. GO Boolean Equation View 1 REQ OK 0 PASS TRY GO 1 GET_TOKEN PASS_TOKEN OKREQandGO PASSnotREQand GO GOTRYorGET_TOKEN PASS_TOKENreg(GET_TOKEN) Waiting for the critical time  solving the equations G. Berry, Nancy

  13. Architecture functionality OK? performance OK? marketing OK? know-how reviews Excel / C prototypes software modeling model-checking theorem proving breakdown OK? performance OK? Micro-Architecture functionality OK? speed / area OK? power OK? random-directed test formal verification RTL Logic Design equivalent to source? circuits formal verification ATPG SAT test coverage ~100% ? DFT (test) connections? electrically OK? timing OK? Place&Route Design Rules Checking (DRC) $ 1,000,000 Masks packaging, testing Chips really works? ESTEREL G. Berry, Nancy

  14. GO Combinational Circuit  Proof Network 1 REQ OK 0 PASS TRY GO 1 GET_TOKEN PASS_TOKEN Each operator is a proof component Circuit  graph of all proofs of outputs from inputs G. Berry, Nancy

  15. Constructive Boolean Propagation Logic • Input vector I inputs → {0,1} • Formulae: Ieb  Ie0 Ie1 Ie0 Ie1 Ie’0 Ie’1 Ie1 Ie0 Ie’0 Ie’1           III(I)  Ie and e’1 Ie or e’1 I not e 0 I not e 1 Ie and e’0 Ie or e’1 Ie or e’0 Ie and e’0         Ie or not e1 ssi I e0 or I e1  X  eIeb    IXb  G. Berry, Nancy

  16. The ABRO Synchronization Example Emit O as soon A and B have arrived Reset this behavior each R Memory Write R : request A : address B : data O : write R / R / A / B / R / A B /O R / B /O A /O G. Berry, Nancy

  17. The ABRO Synchronization Example Emit O as soon A and B have arrived Reset this behavior each R R / R / A / B / R / A B /O R / B /O A /O G. Berry, Nancy

  18. The ABRO Synchronization Example Emit O as soon A and B have arrived Reset this behavior each R R / R / A / B / R / A B /O R / B /O A /O G. Berry, Nancy

  19. The ABRO Synchronization Example Emit O as soon A and B have arrived Reset this behavior each R R / R / A / B / R / A B /O R / B /O A /O G. Berry, Nancy

  20. The ABRO Synchronization Example Emit O as soon A and B have arrived Reset this behavior each R Priority problems: what if A, B, R together? R / R / A / B / R / A B /O R / B /O A /O G. Berry, Nancy

  21. Esterel  Linear Specification loop abort { await A|| await B }; emit O; halt when R; end loop loop abort { await A|| await B }; halt when R; end loop A / B / A B / B / A / G. Berry, Nancy

  22. Esterel  Linear Specification loop abort { await A|| await B }; emit O; halt when R; end loop loop abort { await A|| await B }; emit O; halt when R; end loop A / B / A B /O B /O A /O G. Berry, Nancy

  23. Esterel  Linear Specification loop abort { await A|| await B }; emit O; halt when R; end loop loop abort { await A|| await B }; emit O; halt when R; end loop loop abort { await A|| await B }; emit O; halt when R end loop R / R / A / B / R / A B /O B /O A /O R / G. Berry, Nancy

  24. Esterel  Linear Specification loop abort { await A|| await B }; emit O; halt when R; end loop loop abort { await A|| await B }; emit O; halt when R; end loop loop abort { await A|| await B }; emit O; halt when R end loop R / R / A / B / R / A B /O B /O A /O copies = residuals Esterel = sharing of residuals R / G. Berry, Nancy

  25. Esterel  SyncCharts  Linear Specification loop abort { await A|| await B }; emit O; halt when R end loop R/ B/ A/ /O Hierarchical synchronous concurrent automata (Synchronous Statecharts) G. Berry, Nancy

  26. Linear vs. Exponential exponential explosion! flat automaton Hierarchical automaton linear G. Berry, Nancy

  27. E’k p p’ k0 E E’k p; q p’; q E E’0 F’l p p’ q q’ E E E’UF’l p; q q’ E Logical (SoS) Semantics G. Berry, Nancy

  28. E’k F’l p p’ q q’ E E sE E1 awaits awaits E E’ U F’max(k,l) p’ | q’ p | q E Logical (SoS) Semantics sE E0 awaits 0 E G. Berry, Nancy

  29. suppressed by optimization The ABRO Circuit (Proof Network) loop abort { await A || await B }; emit O; halt whenR end loop G. Berry, Nancy

  30. Optimizing Register Allocation b b e0 e2 • 1-hot encoding • state numberexplostion a a b b • log(n) bits for n states • canblow up the logic e1 e3 e0  10 e1  11 e2  01 e3  00 e0  01 e1  10 e2  11 e3  11 good bad n! possibilities, no heuristics ! G. Berry, Nancy

  31. I O combinationallogic registers R The key: balancing logic and registers Esterel / SyncCharts structural encoding G. Berry, Nancy

  32. The Secret: Linear Specification! loop abort { await A || await B }; emit O ; halt when R end loop One register per explicit wait  good logic / register balance The better the program is written, the more efficient the circuit is! G. Berry, Nancy

  33. Replacing Register by Logic Question: can we replace a given register by logic? Registers r1, r2,..., rn, reachability predicate (r1, r2,..., rn) 1. Question for r1 – looks difficult: f.  b1, b2,..., bn.(b1, b2,..., bn) b1f(b2,..., bn) 2. Logical rephrasing– algorithmically much easier: (0, b2,..., bn) (1, b2,..., bn)  0 3. Iteration + heuristics Very efficient BDD-algorithms (Madre-Coudert-Touati) Yields results always better than manual designs G. Berry, Nancy

  34. Cyclic Circuit from Resource Sharing O = if C then F(G(I)) else G(F(I)) C 1 0 F C 1 0 O I 1 0 G C Cyclic combinational circuits can be exponentially smaller than acyclic circuits for the same function G. Berry, Nancy

  35. Symmetric Round-Robin Protocol req ok A only one okin req order after the register set to1 B ok req G. Berry, Nancy

  36. Symmetric Round-Robin Protocol req ok A The 1 register changes every cycle B ok req G. Berry, Nancy

  37. Symmetric Round-Robin Protocol (4) req ok ok req req ok ok req G. Berry, Nancy

  38. Symmetric Round-Robin Protocol req ok Beware of the combinational cycle ! ok req G. Berry, Nancy

  39. Symmetric Round-Robin Protocol req ok 1 The cycle is sound if at least a register is 1, since it is cut at an or gate ok req G. Berry, Nancy

  40. Symmetric Round-Robin Protocol req ok The cycle is unsound if all registers are 0 ok req G. Berry, Nancy

  41. The Three Kinds of Cyclic Circuits • 1. Electrically and logically sound (possibly under • input conditions) • ex: combinational part of the cyclic round-robin • if at least one register output is 1 2. Electrically and logically unsound X  X X notX • combinational part of the cyclic round-robin • if all register outputs are 0 G. Berry, Nancy

  42. The Three Kinds of Cyclic Circuits ToBe • Logically computes 1 in classical logic, • but computes nothing in constructive logic 3. Strange circuits Hamlet : ToBe  ToBe or not ToBe • Electrically stabilizes to 1 for some gate • and wire delays, but notfor all delays ! G. Berry, Nancy

  43. Cyclic Circuits Analysis When does a circuit stabilize for all delays? Which logical view is correct? How to relate logic to electricity? Theorem:with the right electrical delay model, electrical stabilization for all delays  logical constructivity  definedness w.r.t. ternary simulation G. Berry, Nancy

  44. Ternary simulation 1. Interpret equations over 0, 1,  with 0 and 1 (Scott’s information ordering) 2. Monotonically extend basic Boolean functions   01 10  0 1  1 0  01 11 1 1   0 1   1 0  01 11 1 1 undefinable in C, Java, ML ! 3. Compute the least fixpoint of the equation system G. Berry, Nancy

  45. Theorem:constructive propagation  ternary simulation • Solves good cyclic examples • Correctly rejects Hamlet • no constructive propagation • least fixpoint is ToBe  • Questions: • Do they characterize electrical behavior? • How to model continuous-time signals? • What is the electrical meaning of ? • uninitialized? unstable? metastable? • non-deterministic? etc. G. Berry, Nancy

  46. Modeling Continuous Signals • Continous time in R+, discrete values in B  {0,1} • Signal s: R+→B satisfying • right-continuity: s(t)  b >0. s[t,t+]b • non-Zenoness: finite number of changes for any [t,t’] i DEL o DEL(i,o)  (R+→B)  (R+→B) non-deterministic relation G. Berry, Nancy

  47. UI : Upbounded inertial delay model(Brzozowski-Seger 1995) i  o Inertiality: o cannot change without being unstable if o changes from not b to b at time t, then there exists > 0 s.t. i[t, t] b Propagation: output cannot be unstable for time D without changing if i[t1,t2)  b for t2> t1+, then  t[t1,t2]s.t. o[t,t2]  b G. Berry, Nancy

  48. i o o 0 1 2 3 4 5 6 7 G. Berry, Nancy

  49. Theorem (Shiple-Berry): if all wires and gates have UI-delays, then constructiveness is equivalent to UI-stabilization ... but UI is non-compositional: delay→delaydelay 1 2 i All wires UI-stabilize to 1, but constructive propagation and ternary simulation yield for them G. Berry, Nancy

  50. UN : Upbounded delay model(Mendler 2008) i  o Inertiality:outputs cannot change without unstable if o changes from not b to b at time t, then there exists > 0 s.t. i[t, t] b Propagation: output cannot be unstable for time D without changing if i[t1,t2)  b for t2> t1+, then t[t1,t2]s.t. o[t,t2]  b G. Berry, Nancy

More Related