1 / 71

The MPD@NICA Project at JINR

The MPD@NICA Project at JINR. A.Litvinenko for MPD@NICA collaboration litvin@moonhe.jinr.ru. The MPD@NICA Project at JINR. A.Litvinenko for MPD@NICA collaboration litvin@moonhe.jinr.ru. VBLHEP. Outline. Introduction Motivation Observables Detector conception Conclusions.

kioshi
Download Presentation

The MPD@NICA Project at JINR

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. TheMPD@NICA Project at JINR A.Litvinenko for MPD@NICA collaboration litvin@moonhe.jinr.ru A.Litvinenko VBLHEP JINR

  2. TheMPD@NICA Project at JINR A.Litvinenko for MPD@NICA collaboration litvin@moonhe.jinr.ru VBLHEP A.Litvinenko VBLHEP JINR

  3. Outline • Introduction • Motivation • Observables • Detector conception • Conclusions A.Litvinenko VBLHEP JINR

  4. MPD@NICA Project The MultiPurposeDetector(MPD)isdesignedtostudy Heavy IoncollisionsattheNuclotron-based heavyIon ColliderfAcility(NICA)atJINR,Dubna. • Colliding nuclei up to the Au • Energy • Luminosity ( A.Litvinenko VBLHEP JINR

  5. http://nica.jinr.ru/ http://nica.jinr.ru/files/CDR_MPD/MPD_CDR_en.pdf http://nica.jinr.ru/files/WhitePaper.pdf A.Litvinenko VBLHEP JINR

  6. SYNCHROPHASOTRON NUCLOTRON Fix. Targ. Experiments NICA MPD A.Litvinenko VBLHEP JINR

  7. MPD A.Litvinenko VBLHEP JINR

  8. Some history PHENIX Energy STAR NA-61 NA-49 NICA CBM Time A.Litvinenko VBLHEP JINR

  9. ? Why the initial energy Parameter of Fire Ball (Parameters of exited hadronic matter) Energy density Baryon density Energy density from Bjorken equation Energy density increases with increasing initial energy A.Litvinenko VBLHEP JINR

  10. density of charged hadrons PHOBOS DATA A.Litvinenko VBLHEP JINR

  11. Baryon density can be obtained from net-baryon distribution Stopping power Net protons density A.Litvinenko VBLHEP JINR

  12. RHIC Energy Small baryon density Lattice QCD F. Karsch, Lecture Notes in Physics 583 (2002) 209. A.Litvinenko VBLHEP JINR

  13. Creation of the deconfirment QGP state in heavy-ion collisions, Kind of transition depends on the net baryon density high baryon density  first order transition to QGP A.Litvinenko VBLHEP JINR

  14. The horn in strangeness yield NA-49 data A.Litvinenko VBLHEP JINR

  15. Conclusions I • There is experimental indication on singularity at NICA energy • The initial energy scan is necessary for determination of EoS parameters • It is interesting to know where is critical point • The first order transition can give many interesting signals including signals from mixed phase. A.Litvinenko VBLHEP JINR

  16. Nuclei collisions complicated process. To study it we need a lot of observables. A.Litvinenko VBLHEP JINR

  17. Observables Particles ratios  temperature and chemical potential at Chemical Freezeout A.Litvinenko VBLHEP JINR

  18. Observables Particle spectra  temperature and expansion velosity at Kinematic Freezeout A.Litvinenko VBLHEP JINR

  19. elliptic flow Observables Flows equilibrium time, EoS …. Space eccentricity Elliptic flow Coordinate space asymmetry  momentum space anisotropy A.Litvinenko VBLHEP JINR

  20. Observables Fluctuations:Multiplicities, Particle Ratios, mean pT … Fluctuations from 1st order transition have to be more strong No hard collisions at small energy A.Litvinenko VBLHEP JINR

  21. General view of the MPD CD-central parts,(FS-A, FS-B) - two forward spectrometers (optional). Superconductor solenoid (SC Coil) and magnet yoke, inner detector (IT), straw-tube tracker (ECT),time-projection chamber (TPC),time-of-flight stop counters (TOF), electromagnetic calorimeter(ECal), fast forward detectors (FFD), beam-beam counter (BBC), and zero degree calorimeter(ZDC). A.Litvinenko VBLHEP JINR

  22. Central Detector of MPD with based dimensions A.Litvinenko VBLHEP JINR

  23. MPD pseudorapidity coverage. The barrel part The endcaps (FS-A and FS-B) A.Litvinenko VBLHEP JINR

  24. Magnet of MPD Distribution of the magnetic induction The field inhomogeneityin the tracker area of the detector is about 0.1%. A.Litvinenko VBLHEP JINR

  25. Detector simulation software packages The software framework for the MPD experiment (MpdRoot) is based on the objectorientedframework FairRoot and provides a powerful tool for detector performancestudies, development of algorithms for reconstruction and physics analysis of the data. http://mpd.jinr.ru A.Litvinenko VBLHEP JINR

  26. Time projection chamber (TPC) (tracking, PID) Schematic view A.Litvinenko VBLHEP JINR

  27. Time projection chamber (TPC) Simulation view of TPC in the MpdRoot. A.Litvinenko VBLHEP JINR

  28. Time projection chamber (TPC) Tracks reconstruction Charge particle tracks in the TPC volume for a central Au + Au collision UrQMD 2.3 A.Litvinenko VBLHEP JINR

  29. Time projection chamber (TPC) Particle identification Separation of particles in the TPC by ionization loss A.Litvinenko VBLHEP JINR

  30. Inner Tracker System (vertex reconstruction, secondary vertex reconstruction) A.Litvinenko VBLHEP JINR

  31. Inner Tracker System Hyperons identification TPC TPC + ITS A.Litvinenko VBLHEP JINR

  32. Time of Flight System (ToF) Multigap Resistive Plate Counters (MRPC) PID (0.1–2 GeV/c) – ToF + TPC Barrel of TOF system Distribution of RPC elements in the barrel A.Litvinenko VBLHEP JINR

  33. Time of Flight System (ToF) PIDwith TOF and TPC A.Litvinenko VBLHEP JINR

  34. Electromagnetic calorimeter The “shashlyk” type calorimeter sampling Pb(0.5mm) + Sc(1.5 mm) (170 layers) the “shashlyk” calorimeter module Detector sector ECAL detector. A.Litvinenko VBLHEP JINR

  35. Electromagnetic probes provide information about: • Early stage of collision • Temperatureevolution of the system from its formation to thermal freez-out • Comparison of resonanses properties as seen in dielectron and hadronicdecay channels in Au+Au collisions A.Litvinenko VBLHEP JINR

  36. A.Litvinenko VBLHEP JINR

  37. A.Litvinenko VBLHEP JINR

  38. The importance of the centrality classification Elliptic flow Space eccentricity Nuclear Physics A V757, No. 1-2 , p.184,2005 elliptic flow scaling with space eccentricity short equlibration time A.Litvinenko VBLHEP JINR

  39. LAQGSM, Sqrt(S)=5 GeV URQMD, Sqrt(S)=5 GeV Total kinetic energy of all nucleonsand fragments directed to ZDC A.Litvinenko VBLHEP JINR

  40. The centrality determination: ZDC + number tracks in TPC A.Litvinenko VBLHEP JINR

  41. MPD Collaboration Joint Institute for Nuclear Research Kh.U.Abraamyan, S.V.Afanasiev,V.S.Alfeev, N.Anfimov, D.Arkhipkin, P.Zh.Aslanyan,A.V.Averyanov, V.A.Babkin, S.N.Bazylev, D.Blaschke, D.N.Bogoslovsky,I.V.Boguslavski, A.V.Butenko, V.V.Chalyshev, S.P.Chernenko, Vl.F.Chepurnov,l.F.Chepurnov, G.A.Cheremukhina, I.E.Chirikov-Zorin, D.E.Donetz, K.Davkov,V.Davkov, D.K.Dryablov, D.Drnojan, V.B.Dunin, L.G.Efimov, A.A.Efremov,E.Egorov, D.D.Emelyanov, O.V.Fateev, Yu.I.Fedotov, A.V.Friesen, O.P.Gavrischuk,K.V.Gertsenberger, V.M.Golovatyuk, I.N.Goncharov, N.V.Gorbunov, Yu.A.Gornushkin,N.Grigalashvili, A.V.Guskov, A.Yu.Isupov, V.N.Jejer, M.G.Kadykov, M.Kapishin,A.O.Kechechyan, V.D.Kekelidze, G.D.Kekelidze, H.G.Khodzhibagiyan, Yu.T.Kiryushin,V.I.Kolesnikov, A.M.Korotkova, A.D.Kovalenko, N.D.Krahotin, Z.V.Krumshtein,N.A.Kuz’min, R.Lednicky, A.G.Litvinenko, E.I.Litvinenko, Yu.Yu.Lobanov,S.P.Lobastov, V.M.Lysan, L.Lytkin, J.Lukstins, V.M.Lucenko, D.T.Madigozhin,A.I.Malakhov, I.N.Meshkov, V.V.Mialkovski, I.I.Migulina, N.A.Molokanova,S.A.Movchan, Yu.A.Murin, G.J.Musulmanbekov, D.Nikitin, V.A.Nikitin,A.G.Olshevski, V.F.Peresedov, D.V.Peshekhonov, V.D.Peshekhonov, I.A.Polenkevich,Yu.K.Potrebenikov, V.S.Pronskikh, A.M.Raportirenko, S.V.Razin, O.V.Rogachevsky,A.B.Sadovsky, Z.Sadygov, R.A.Salmin, A.A.Savenkov,W.Scheinast, S.V.Sergeev,B.G.Shchinov, A.V.Shabunov, A.O.Sidorin, I.V.Slepnev, V.M.Slepnev, I.P.Slepov,A.S.Sorin, O.V.Teryaev, V.V.Tichomirov, V.D.Toneev, N.D.Topilin, G.V.Trubnikov,I.A.Tyapkin, N.M.Vladimirova, A.S.Vodop’yanov, S.V.Volgin, A.S.Yukaev, V.I.Yurevich,Yu.V.Zanevsky, A.I.Zinchenko, V.N.Zrjuev, Yu.R.Zulkarneeva A.Litvinenko VBLHEP JINR

  42. MPD Collaboration Institute for Nuclear Research, RAS, RF V.A.Matveev, M.B.Golubeva, F.F.Guber, A.P.Ivashkin, L.V.Kravchuck, A.B.Kurepin,.L.Karavicheva, A.I.Maevskaya, A.I.Reshetin, E.A.Usenko Skobeltsyn Institute of Nuclear Physics Moscow State University E.E.Boos, V.L.Korotkikh, I.P.Lokhtin, L.V.Malinina, M.M.Merkin, S.V.Petrushanko,L.I.Sarycheva, A.M.Snigirev, A.G.Voronin Institute for Theoretical Experimental Physics, Moscow, Russia O.A.Denisovskaia, K.R.Mikhailov, P.A.Polozov, M.S.Prokudin, G.B.Sharkov,A.V.Stavinskiy, V.L.Stolin, S.S.Tolstoukhov St.Petersburg State University S.Igolkin, G.Feofilov, V.Zherebchevskiy, V.Lazarev Institute for Nuclear Reseach & Nuclear Energy BAS, Sofia, Bulgaria I.Stamenov, I.Geshkov Institute for Scintillation Materials, Kharkov, Ukraine D.A.Bliznyuk, B.V.Grinyov, P.N.Zhmurin A.Litvinenko VBLHEP JINR

  43. MPD Collaboration State Enterprise Scientific & Technology Research Institute for Apparatus construction, Kharkov, Ukraine V.N.Borshchov, O.M.Listratenko, M.A.Protsenko, I.T.Tymchuk Particle Physics Center of Belarusian State University N.M.Shumeiko, F.Zazulia Department of Engineering Physics, Tsinghua University, Beijing, China Cheng Li, Hongfang Chen, Ming Shao, Xiaoliang Wang, Yongjie Sun, Zebo Tang Physics Institute Az.AS, Azerbaidjan O.Abdinov, M.Suleimanov ”Neva-Magnet” S&E, ltd, St-Petersburg, Russia T.K.Koshurnikov "HORIA HULUBEI National Institute of R&D for Physics and NuclearEngineering", IFIN-HH, Bucharest, ROMANIA M.Apostol, F.Constantin, I.Cruceru, M.Cruceru A.Litvinenko VBLHEP JINR

  44. Conclusuions II • CDR is prepared and published • There is a big collaboration around project • R&D is going on • Welcome to MPD Collaboration A.Litvinenko VBLHEP JINR

  45. Thank you A.Litvinenko VBLHEP JINR

  46. Backup slides A.Litvinenko VBLHEP JINR

  47. A conceptual design of the Multi-Purpose Detector to be built for the heavy-ion experimental program at JINR (Dubna) has been briefly described. The MPD comprises a tracking system based on TPC and ITS built of double-sided silicon microstrip detectors. Identification of charged hadrons is performed by a time-of-flight system based on mRPC technology; electrons and gammas are detected by a shashlyk-type electromagnetic calorimeter. A.Litvinenko VBLHEP JINR

  48. NICA Physics. Electromagnetic probes (dileptons) 3.0 2.5 2.0 1.5 1.0 0.5 0.0 Ratio 0.0 0.2 0.4 0.6 0.8 1.0 mee (GeV/c2) Changes of the particle properties (broadening of spectral functions) in hot and dense medium. NICA is well situated to study in-medium effects due to highest baryon densities. HSD model : ratio of modified by medium to free di-electron spectra PLB 666 (2008) 425 • Energy range (NICA): • Onset of the low-mass pair enhancement. • Study the effect under highest baryon density conditions 48 A.Litvinenko VBLHEP JINR

  49. RHIC Energy Small baryon density Lattice QCD F. Karsch, Lecture Notes in Physics 583 (2002) 209. A.Litvinenko VBLHEP JINR

  50. For A.Litvinenko VBLHEP JINR

More Related