1 / 17

Průvodní trojhran křivky

Průvodní trojhran křivky. Zavedení prvků průvodního trojhranu křivky 1. Tečná rovina (symbol  ) Tečná rovina  křivky k v jejím regulárním neinflexním bodě A je jakákoliv rovina, ve které leží tečna t křivky k v bodě A. Odtud

kiri
Download Presentation

Průvodní trojhran křivky

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Průvodní trojhran křivky Zavedení prvků průvodního trojhranu křivky 1. Tečná rovina (symbol  ) Tečná rovina křivky k v jejím regulárním neinflexním bodě A je jakákoliv rovina, ve které leží tečna t křivky k v bodě A. Odtud plyne existence množiny nekonečně mnoha tečných rovin křivky k v jejím regulárním neinflexním bodě A. 2. Normálová rovina (symbol  ) Normálová rovina křivky k v jejím regulárním neinflexním bodě A je rovina procházející tímto bodem kolmo k tečně t sestrojené v tomto bodě.

  2. 3. Normála (symbol n) Normála n křivky k v jejím regulárním neinflexním bodě A je jakákoliv přímka procházející tímto bodem kolmo k tečně t Sestrojené v tomto bodě. Lze shrnout, že existuje svazek takovýchto přímek. Přitom všechny normály leží v normálové rovině  křivky k sestrojené v bodě A. 4. Oskulační rovina(symbol ) Rovina , která prochází regulárním neinflex- ním bodem A (t0) křivky k a která je rovnoběžná s vektory r´(t0), r´´(t0), se nazývá oskulační rovina křivky k v bodě A(t0).

  3. 5. Binormála (symbol b) Binormála b je přímka procházející regulárním neinflexním bodem A křivky k kolmo oskulační rovině křivky k v bodě A. Binormála je kolmá k tečně t v bodě A křivky k. Je to jedna přímka ze svazku normál. Směrový vektor b binormály lze určit vektorovým součinem dvou nekolineárních vektorů ležících v oskulační rovině křivky k v bodě A. Je-li bod A neinflexním bodem křivky k, pak ony dva vektory jsou vektory r´(t0), r´´(t0) první a druhé derivace vektorové funkce popisující danou křivku k. Potom můžeme psát b (t0) = r´(t0) r´´(t0). 6. Hlavní normála (symbol n) Hlavní normálou křivky k v jejím regulárním neinflexním bodě A nazýváme normálu ležící v oskulační rovině křivky k. Hlavní normála n musí být v bodě A křivky k kolmá k tečně t a k binormáleb. Směrový vektor hlavní normály je definovaný jako vektorový součin n (t0) = t (t0) b (t0) = r´(t0)  b (t0).

  4. 7. Rektifikační rovina (symbol ) Rektifikační rovina  v regulárním neinflexním bodě A křivky k je rovina procházející tímto bodem kolmo k hlavní normále v bodě A. Tečna t a binormála b sestrojené v daném bodě A křivky k leží v rektifikační rovině  procházející bodem A. Lze shrnout, že v regulárním neinflexním bodě A křivky k je definována trojice navzájem kolmých přímek: t … tečna, b … binormála, n … hlavní normála, přitom pro jejich směrové vektory platí t (t0) = r´(t0), b (t0) = r´(t0) r´´(t0), n (t0) = t (t0) b (t0) = r´(t0)  b (t0).

  5. Dále je v regulárním neinflexním bodě A křivky k definována trojice navzájem kolmých rovin:  = (t, n) . . . oskulační rovina,  = (b, n) . . . normálová rovina,  = (t, b) . . . rektifikační rovina. Uvedenými trojicemi navzájem kolmých rovin a navzájem kolmých přímek je jednoznačně definován pravoúhlý trojhran s vrcholem v bodě A, tzv. průvodní trojhran křivky. Jeho hrany jsou rovnoběžné s vektory t(t), b(t), n(t) a jsou to polopřímky na tečně, binormále a na hlavní normále s počátečním bodem v bodě A. Stěny průvodního trojhranu leží ve třech uvedených rovinách, tj. v rovině rektifikační, oskulační a normálové. Vlastnosti rovinných křivek: Poznámka: Oskulační rovina rovinné křivky k splývá s rovinou, ve které daná křivka leží. Poznámka: Všechny oskulační roviny leží v rovině křivky. Poznámka: Všechny tečny leží v rovině křivky.

  6. Příklad 3.6: Určete prvky průvodního trojhranu (parametrické rovnice tečny, binormály, hlavní normály a obecné rovnice normálové, oskulační a rektifikační roviny) křivky r (t) = (t - sin t, 1 – cos t, t) v bodě t0 =/2 .

  7. Křivost křivky V okolí regulárního bodu A(t0) křivky k je možné určovat odchylky  tečny t v bodě A(t0) od tečen v bodech K (t) ležících ve „velmi blízkém“ okolí bodu A(t0). Je-li tedy  odchylka tečen křivky k v jejích regulárních bodech A(t0), K (t), pak za míru křivosti na oblouku AK považujeme podíl kde s (AK) je délka oblouku AK na křivce k. Délkou oblouku AK přitom rozumíme integrální součet velikostí stran vepsané lomené čáry A X1X2 … XnK. To vede k výpočtu délky s (AK) oblouku AK, tj. platí, že

  8. Definice: Křivostí křivky k v jejím regulárním bodě A(t0) nazýváme reálné číslo Pro k (t0) ≠ 0 nazveme číslo poloměrem křivostibodě A(t0). Je-li křivka k určena vektorovou rovnicí r = r(t), pak pro výpočet její křivosti k(t0) v bodě pro hodnotu parametru t0 platí Poznámka: Z uvedeného vzorce plyne, že v inflexním bodě křivky je křivost k(t0) = 0. Poznámka: Přímka má ve všech svých bodech nulovou křivost a na druhou stranu křivka, jejíž křivost je ve všech jejích bodech identicky rovna nule, je přímka.

  9. Oskulační kružnice křivky V okolí regulárního bodu A křivky k můžeme křivku k přibližně nahradit tzv. oskulační kružnicí. Oskulační kružnice je taková kružnice, která má v bodě A s křivkou k: a) společnou tečnu t, b) stejnou křivost (resp. stejný poloměr křivosti), c) společnou hlavní normálu. Pro střed S oskulační kružnice platí: kde je jednotkový směrový vektor hlavní normály n v bodě A (t0). Poznámka: Oskulační kružnice leží zřejmě v oskulační rovině křivky. Poznámka: Z konstruktivního hlediska mají oskulační kružnice využití převážně u rovinných křivek. Vzhledem ke skutečnosti, že rovinná křivka leží ve své oskulační rovině, je hlavní normálou n křivky k v bodě A kolmice na její tečnu v bodě A. Pak mluvíme o tzv. normále rovinné křivky.

  10. Příklad 3.7: V bodě t0 = 0 určete křivost křivky a poloměr oskulační kružnice křivky dané vektorovou rovnicí r(t) = (t 2, et, cos t).

  11. Šroubovice Šroubovice je prostorová křivka daná vektorovou rovnicí r (t) = (a·cos t, a·sin t, bt), a  0, b ≠ 0, a, b  R. Poznámka: Z rovnic x = a·cos t, y = a·sin t plyne, že x-ové a y-ové souřadnice vektorové rovnice šroubovice určují kružnici o poloměru a ležící v souřadnicové rovině xy. Rovnice z = bt popisuje posunutí ve směru osy z. Definice: Šroubovice je dráha bodu, který se otáčí kolem osy z (tzv. osa šroubovice) a který se zároveň posouvá ve směru osy z. Platí, že velikost posunutí bt ve směru osy z je přímo úměrná velikosti otočení t kolem osy z. Definice: Šroubový pohyb vzniká složením rovnoměrného otáčivého pohybu kolem pevné přímky o (tzv. osa šroubového pohybu) a rovnoměrného posuvného pohybu ve směru přímky o.

  12. Šroubovice je trajektorie bodu, který je podroben šroubovému pohybu. Je-li osa o šroubového pohybu svislá, pak šroubový pohyb, při němž se tvořící bod otáčí kolem osy oproti směru hodinových ručiček, nazývámepo pravotočivý a příslušnou šroubovici nazýváme pravotočivou. levotočivý levotočivou pravotočivá šroubovice levotočivá šroubovice

  13. Poznámka: Šroubovice popsaná vektorovou rovnicí r (t) = (a·cos t, a·sin t, bt), a  0, b ≠ 0, a, b  R, vznikla jako trajektorie tvořícího bodu M, ležícího na ose x, při pravotočivém šroubovém pohybu s osou o  z, kde úsečka OM má velikost a a rychlost posouvání ve směru osy z je b. Definice: Označíme-li (v obloukové míře) t velikost otočení, pak velikost posunutí příslušného k otočení o t = 2 radiánů nazýváme výška závitu v t = 1 radiánredukovaná výška závitu b šroubového pohybu. Poznámka: Pro výšku závitu v a redukovanou výšku závitu b platí následující vztah v = 2 ·b.

  14. K určení šroubového pohybu je nutné znát: • osu šroubového pohybu o, • výšku závitu v nebo redukovanou výšku závitu b, • smysl šroubového pohybu (pravotočivý či levotočivý). K určení šroubovice je nutné znát: • šroubový pohyb, • tvořící bod šroubovice. Symbolicky píšeme šroubovice (M, o, b, {±}) a čteme šroubovice určená tvořícím bodem M, osou šroubového pohybu o, redukovanou výškou závitu b a informací o pravotočivosti či levotočivosti šroubovice.

  15. Charakteristický trojúhelník šroubovice Šroubovice leží na rotační válcové plošes osou o totožnou s osou šroubovice a s poloměrem a rovným vzdálenosti tvořícího bodu M šroubovice od osy o. Na obrázku je zakreslen jeden závit šroubovice omezený body M, M´ a rozvinutí části válcové plochy o výšce jednoho závitu v. Řídicí kružnice válcové plochy se rozvine do úsečky MN délky 2 ·a (obvod řídicí kružnice), šroubovice se rozvine do úsečky MM´, která je přeponou pravoúhlého trojúhelníka s odvěsnami MN a v = NM´. Pravoúhlý trojúhelník MNM´ nazveme charakteristický trojúhelník šroubovice.

  16. Pomocí charakteristického trojúhelníku šroubovice lze při řešení konstruktivních úloh o šroubovici nalézt: a) redukovanou výšku závitu b při známé výšce závitu v a naopak Vzhledem ke skutečnosti, že redukovaná výška závitu b je velikost posunutí, které přísluší k otočení o úhel t rovný 1 radiánu, stačí v charakteristickém trojúhelníku MNM´ šroubovice nanést na polopřímku MN délku poloměru a řídicí kružnice válcové plochy, na níž šroubovice leží, a úsečka BV, (a = |MB|, bod B leží na polopřímce MN a bod V ležína polopřímce MM´ charakteristického trojúhelníku MNM´ šroubovice), která je kolmá k polopřímce MN má délku b. b) posunutí z příslušné k otočení o úhel t a naopak Otočení o úhel t měříme velikostí oblouku MX1 = at řídicí kružnice válcové plochy, na níž šroubovice leží. Délku velikosti posunutí z získáme v charakteristickém trojúhelníku MNM´ šroubovice a to následujícím způsobem. Na úsečce MN sestrojíme bod X1 tak, aby |MX1| = at . Bodem X1 dále sestrojímekolmici k polopřímce MN. Ta nám protne polopřímku MM´ v bodě X. Pak platí, že |XX1| = z příslušné k otočení o úhel t.

  17. c) úhel, který svírají tečny šroubovice s rovinou kolmou k její ose Všechny tečny šroubovice svírají s rovinou kolmou k její ose konstantní úhel , který je roven velikosti úhlu při vrcholu M v charakteristickém trojúhelníku MBV šroubovice. Úhel  nazýváme sklonem šroubovice. Poznámka: Z charakteristického trojúhelníka MBV šroubovice lze odvodit, že platí tg  = b/a, kde tg  nazývámespádem šroubovice. Řídicí kuželová plocha šroubovice Řídicí kuželovou plochou šroubovice nazýváme kuželovou plochu, jejíž površky jsou rovnoběžné s tečnami šroubovice. Při promítání, kdy osa o šroubovice je kolmá na půdorysnu, volíme vrchol V řídicí kuželové plochy na ose o tak, že zV = b. Pak je řídicí kružnice šroubovice množinou půdorysných stopníků površek řídicí kuželové plochy. Je-li řídicí kuželová plocha šroubovice určena, lze sestrojovat tečny šroubovice jako rovnoběžky s površkami řídicí kuželové plochy.

More Related