1 / 11

High-Performance Poly-Si TFTs Fabricated by Implant-to-Silicide Technique

High-Performance Poly-Si TFTs Fabricated by Implant-to-Silicide Technique IEEE ELECTRON DEVICE LETTERS, VOL. 26, NO. 3, MARCH 2005 陳宜琳. What is ITS (Implant To Silicide) :. S/D 的摻雜是利用離子佈植的方式,形成 ultra short shallow S/D extension (SDE) 。而由此形成的 TFT ,稱之為 FSD TFT (Fully silicided S/D TFT) 。.

kita
Download Presentation

High-Performance Poly-Si TFTs Fabricated by Implant-to-Silicide Technique

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. High-Performance Poly-Si TFTs Fabricated by Implant-to-Silicide Technique IEEE ELECTRON DEVICE LETTERS, VOL. 26, NO. 3, MARCH 2005 陳宜琳

  2. What is ITS (Implant To Silicide): S/D的摻雜是利用離子佈植的方式,形成ultra short shallow S/D extension (SDE)。而由此形成的TFT,稱之為FSD TFT (Fully silicided S/D TFT)。 Why we use ITS: 為了要整合週邊驅動電路在同一塊玻璃基板上,我們需要高 比值(TFT device more and more smaller)。ITS技術,其製程簡單,且在約600 , 快速形成ultra short shallow SDE,此ultra short shallow SDE能降低短通道效應及降低寄生電阻。

  3. FSD TFT by ITS: 優點: • 因為極淺的S/D→較好的短通道特性,但阻值高 。 • 因為極短的S/D→有效減低寄生電阻 。 • 製程簡單,植入後的回火處理(利用RTA)時間 較短,且摻雜物的擴散速度快→產量高。 • 因為做S/D的佈植時,不會損害Poly-Si layer即表面defect較少→接面漏電流較小(Qot少)。 • 因為使用RTA回火→Thermal Budget較低。

  4. FSD TFT 與 conventional Poly-Si TFT(CN TFT)比較

  5. FSD TFT process: Step 1:dep. a-Si for 45 nm at 550 using LPCVD. a-Si Substrate Step 2:the a-Si layer was recrystallized by SPC at 600 for 24h in then etching. Poly-Si Substrate

  6. Poly-Si gate Step 3:a 45 nm CVD gate oxide and a-Si layer 100 nm were deposited then etching. Gate oxide Poly-Si Substrate Step 4:dep. a 100 nm CVD oxide layer and anisotropically etched to form a sidewall spacer abutting the poly-Si gate. Poly-Si gate Gate oxide Poly-Si Substrate Sidewall spacer (oxide)

  7. P ions Ni-silicide Step 5:dep. a thin Ni layer 22 nm by RTA at 500 for 40s to form the FSD and wet etching (SPM→ 3:1). Poly-Si gate Ni-silicide Gate oxide Poly-Si Poly-Si gate Substrate Gate oxide Poly-Si Substrate Ni-silicide SDE Ni-silicide Poly-Si gate Gate oxide Poly-Si Substrate Step 6:implant P ions at 30 KeV. P ions were diffused out of silicide to form an ultrashort SDE by a low-temperature RTA at 600 for 30s in . (P原子在Ni silicide中的溶解度很低,其擴散及堆積在silicide表面形成SDE )

  8. (Transfer characteristics) 特性均變較佳 (Device characteristics) 特性: 線性區 = 0.1V 飽和區 = 5V

  9. 下圖顯示(線性區),在閘極加不同的偏壓,描繪每一條曲線,最後會交集在同一點,即為 。下圖為FSD TFT。CN TFT亦使用同樣方式可求得 為20k 。 (Out characteristics) 上圖顯示,FSD比CN有較大的driving current,尤其是在越大的閘極偏壓下;因為越大的閘極偏壓,其通道的電阻值越小。 (The width-normalized ON resistance)

  10. (短通道效應- roll off)

  11. 結論 • 利用ITS方法製作的TFT性質比CN TFT還要好。最大好處在於ultra short shallow S/D extension結構,使擁有較好的短通道特性及低的寄生電阻;而且製程簡單(成本低)、快速(產量高)、並且短時間的製程(回火時間短,熱預算即小)。

More Related