260 likes | 402 Views
High Dimensional Chaos. Tutorial Session IASTED International Workshop on Modern Nonlinear Theory (Bifurcation and Chaos) ~Montreal 2007~ . Zdzislaw Musielak, Ph.D. and Dora Musielak, Ph.D. University of Texas at Arlington (UTA) Arlington, Texas (USA). Lecture 3.
E N D
High Dimensional Chaos Tutorial Session IASTED International Workshop on Modern Nonlinear Theory (Bifurcation and Chaos) ~Montreal 2007~ Zdzislaw Musielak, Ph.D. and Dora Musielak, Ph.D. University of Texas at Arlington (UTA) Arlington, Texas (USA)
Lecture 3 Objective: Review other systems that show high-dimensional chaos (HDC) and determine basic routes to HDC • 4D Rössler system • Other HD Lorenz models • Another HD Duffing system • Double pendula • Other interesting HD systems • Routes to chaos • Summary
4D Rössler System First HD system with two positive Lyapunov exponents was introduced by Rössler (1979)
Strange Attractor I First-return map to a Poincaré section Plane projection of the strange attractor Strange attractor is characterized by two positive, one negative and one zero Lyapunov exponents.
Strange Attractor II AIHARE, Electrical Eng. Co., Japan
HD Lorenz Models I Li, Tang and Chen (2005) generalized the 3D Lorenz model by adding a new variable that couples to the second equation of Lorenz’s equations and derived a 4D Lorenz model. They designed a circuit that approximates the 4D system.
Theory vs Experiment Li, Tang and Chen (2005)
HD Lorenz Models II 9D Lorenz model (Reiterer et al. 1998) Model describes a 3D Rayleigh-Benard convection Hyperchaos at R = 43.3 Period-doubling cascade Model does not conserve energy in dissipationless limit (Roy & Musielak 2006)
Another HD Duffing System Savi & Pacheco (2002)
Phase Portraits Savi & Pacheco (2002)
Double Pendula I Initial speeds, left: Initial speeds, right: main arm = 400.0 degrees/sec main arm = 400.1 degrees/sec secondary arm = 0.0 degrees/sec secondary arm = 0.0 degrees/sec Ross Bannister: www.rdg.ac.uk/~ross
Double Pendula II Bannister (2005)
Coupled Logistic Maps General route to HDC - Harrison & Lai (1999, 2000) Pazo et al (2001)
Coupled Rössler Systems Harrison & Lai (2000)
Modified Chua’s Circuit Original Chua’s circuit Modified Chua’s circuit Thamilmaran et al (2004)
Experimental Results Phase portraits Poincaré sections Power spectra Thamilmaran et al (2004)
Theoretical Results Thamilmaran et al. (2004)
Other Systems with HDC • Coupled Ikeda maps • Chaotically driven Zaslavsky map • Delayed Henon maps • Coupled three or more Lorenz systems • Coupled two or more lasers • Phonic integrated circuits • Miniature eye movements • Excitable physiological systems • Spreading of rumor
Types and Properties ofHD Systems 1. Strange attractors with dimensions dcor > 3 but only one positive Lyapunov exponent - no hyperchaos. 2. Strange attractors with dimensions dcor > 3 and two or more positive Lyapunov exponents - systems with hyperchaos. HD and LD systems behave differently and chaos is persistent (no windows of periodicity) in HD dynamical systems (Albers et al 2005)
Routes to HDC I • Same as routes for LD systems: (a) Period-doubling (b) Quasi-periodicity (c) Intermittency (d) Chaotic transients (e) Crisis • First LD chaos by one of the above routes and then to HD chaos. Harrison & Lai (1999) and Pazo et al (2001)
Routes to HDC II • Quasi-periodicity – torus doubling – torus merging – chaos Venkatesan & Lakshmanan (1998) • Quasi-periodicity – torus – 3-period window – chaos Musielak et al (2005) • Sequence of Neimark-Sacker bifurcations Alberts & Sprott (2004)
SUMMARY • High-dimensional (HD) dynamical systems that exhibit chaos can be constructed by adding degrees of freedom to low-dimensional dynamical systems. • High dimensional chaos (HDC) is observed in HD nonlinear systems whose strange attractors have dimensions dcor > 3. • Two types of systems with HDC have been identified, those with and without hyperchaos. • HD systems may transition to chaos via one of the routes known for LD systems or via new routes; four new routes have been identified, others still remain to be discovered.
Acknowledgments Special thanks to Professor Ahmad M. Harb and the organizers of the IASTED International Workshop on Modern Nonlinear Theory for the invitation to present this tutorial. Support for this work was provided by NASA / MSFC, US Army and The Alexander von Humboldt Foundation in Germany.
References • Albers, D.J., Sprott, J.C. and Crutchfield, J.P., 2005, arxiv.org/abs/nlin.CD/0504040 • Albers, D.J. and Sprott, J.C., 2006, Physica D, 223, 194 • Argyris, J., Faust, G. and Haase, M., 1993, Phil. Trans. Phys. Sci. & Eng., 344, 207 • Benner, J.W., 1997, Ph.D. Dissertation, The University of Alabama in Huntsville • Chen, Z.-M.and Price, W.G., 2006, Chaos, Solitons and Fractals, 28, 571 • Curry, J.H., 1978, Commun. Math. Phys., 60, 193. • Curry, J.H., 1979, SIAM J. Math. Anal., 10, 71. • Eckmann, J.P., 1981, Rev. Mod. Phys., 53, 643 • Feigenbaum, M.J., 1979, J. Stat. Phys., 21, 669 • Feigenbaum, M.J., 1980, Universal Behavior in Nonlinear Systems, Los Alamos Science, 1, 4-27 • Gilmore, R., 1998, Rev. Mod. Phys., 70, 1455 • Greborgi, C., Ott, E. and Yorke, J.A., 1983, Physica D, 7, 181 • Hanon, M., 1969, Q. Appl. Math., 27, 135 • Hanon, M., 1976, Comm. Math. Phys., 50, 6977 • Harrison, M.A. and Lai, Y.C., 1999, Phys. Rev. E, 59, 3799 • Harrison, M.A. and Lai, Y.C., 2000, Int. J. Bifur. Chaos, 10, 1471 • R.C. Hilbron, R.C., 1994, Chaos and Nonlinear Dynamics, Oxford, Oxford Uni. Press • Howard, L.N. and R.K. Krishnamurti, R.K., 1986, J. Fluid Mech., 170, 385 • Humi, M., 2004, arXiv:nlin.CD/0409025 v1 • Ivancevic, V.G. and Ivancevic, T.T., 2007, High-Dimensional Chaotic and Attractor • Systems, Dordrecht, Springer • E.A. Jackson, E.A., 1990, Perspectives of Nonlinear Dynamics, Cambridge, Cambridge Uni. • Kennamer, K.S., 1995, M.S. Thesis, The University of Alabama in Huntsville • Li, Y., Tang, W.K.S. and Chen, G., 2005, Int. J. Circuit Theor. & Applic., 33, 235 • Lorenz, E.N., 1963, J. Atmos. Sci., 20, 130. • Moon, F.C., 1987, Chaotic Vibrations, New York, John Wiley & Sons, Inc. • Moon, F.C., 1992, Chaotic and Fractal Dynamics, New York, John Wiley & Sons, Inc.
References (cont’d) • Musielak, D.E., Musielak, Z.E. and Kennamer, K.S., 2005, Fractals, 13, 19 • Musielak, D.E., Musielak, Z.E. and Benner, J.W., 2005, Chaos, Solitons and Fractals, • 24, 907 • Newhouse, S.E., Ruelle, D. and Takens, F., 1978, Commun. Math. Phys., 64, 35 • Ott, E., 1993, Chaos in Dynamical Systems, Cambridge, Cambridge Uni. Press • Pazo, D., Sanchez, E. and Matias, M., 2001, Int. J. Bifur. Chaos, 11, 2683 • Poincare, H., 1890, Acta Math., 13,1 • Pommeau, Y. and Manneville, P., 1980, Commun. Math. Phys., 74, 189 • Reiterer, P., Lainscsek, C. Schurrer, F. Letellier, C. and Maquet, J., 1998, J. Phys. A: Math. Gen., 31, 7121 • Roy, D. and Musielak, Z.E., 2007, Chaos, Solitons and Fractals, 31, 747 • Roy, D. and Musielak, Z.E., 2007, Chaos, Solitons and Fractals, 32, 1038 • Roy, D. and Musielak, Z.E., 2007, Chaos, Solitons and Fractals, 33, 138 • Rossler, O., 1979, Phys. Lett., 71, 155 • Rossler, O., 1983, Z. Naturforsch., 38, 126 • Ruelle, D. and Takens, F., 1971, Commun. Math. Phys., 20, 167 • Savi, M.A. and Pacheco, P.M.C.L., 2002, J. Braz. Soc. Mech. Sci., 24, • Saltzman, B., 1962, J. Atmos. Sci., 19, 329 • Schmutz, M. and Rueff, M., 1984, Physica D, 11, 167 • Thamilmaran, K., Lakshmanan, M. and Venkatesan, A., 2004, Int. J. Bifur. Chaos., • 14, 221 • Thiffeault, J.L., 1995, M.S. Thesis, The University of Texas at Austin • Thieffault, J.L. and Horton, W., 1996, Phys. Fluids, 8, 1715
References (cont’d) • Thompson, J.M.T. and H.B. Stewart, H.B., 1986, Nonlinear Dynamics and Chaos, • New York, John Wiley & Sons, Inc. • Tong, C. and Gluhovsky, A., 2002, Phys. Rev. E, 65, 046306-1-11 • Treve, Y.M. and Manley, O.P., 1982, Physica D, 4, 319 • Tucker, W., 1999, C.R. Acad. Sci., 328, 1197 • Ueda, Y., 1979, J. Stat. Phys., 20, 181 • Ueda, Y., 1980, in New Approaches to Nonlinear Problems in Dynamics, edited by P. J. Holmes (Siam, Philadelphia), p.311