1 / 31

Maxwell’s Equations

Maxwell’s Equations. We have been examining a variety of electrical and magnetic phenomena James Clerk Maxwell summarized in 1873 all of electricity and magnetism in just four equations Remarkably, the equations predict the existence of electromagnetic waves.

kristy
Download Presentation

Maxwell’s Equations

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Maxwell’s Equations We have been examining a variety of electrical and magnetic phenomena James Clerk Maxwell summarized in 1873 all of electricity and magnetism in just four equations Remarkably, the equations predict the existence of electromagnetic waves

  2. The electric field is due to electric charges. Related to electric flux Electric field lines start or stop on a charge or make a closed loop. Gauss

  3. There are no magnetic charges. Magnetic field lines can only make a closed loops. No Monopoles

  4. An emf is induced by a varying magnetic field within a closed path. Magnetic forces will move charges. This implies that a changing magnetic field creates an electric field. Faraday

  5. Ampere Ampere’s Law: Earlier, we just went on a closed path enclosing surface 1. But according to Ampere’s Law, we could have considered surface 2. The current enclosed is the same as for surface 1. We can say that the current flowing into any volume must equal that coming out.

  6. IV Maxwell’s Equation Suppose we have a charged capacitor and it begins to discharge Surface 1 works but surface 2 has no current passing through the surface yet there is a magnetic field inside the surface.

  7. Problems with Ampere’s Law with Surface 1

  8. But if we use Surface 2 ...

  9. Maxwell’s correction to Ampere’s Law Called “displacement current”, Id

  10. B field surrounds electric field, although there is no “current” flowing here A magnetic field is induced by an electric current. There is an electric flux as well. Changes create magnetic fields This implies that a changing magnetic field creates an electric field. IV Maxwell equation: Ampere’s Extended law

  11. Maxwell’s Equations Gauss’s Law Gauss’s Law for Magnetism Faraday’s Law Ampere’s Law

  12. Maxwell’s Equations: • Maxwell noted the symmetry between electric and magnetic fields. • Changing magnetic fields create electric fields • Current and changing electric fields create magnetic fields • Electric field lines originate from charges or form closed loops • Magnetic field lines form closed loops

  13. A capacitor being charged by a current ic has a displacement current equal to iC between the plates, with displacement current iD = e A dE/dt. This changing E field can be regarded as the source of the magnetic field between the plates.

  14. Electromagnetic Waves Production So, a magnetic field will be produced in space if there is a changing electric field But, this magnetic field is changing since the electric field is changing A changing magnetic field produces an electric field that is also changing We have a self-perpetuating system

  15. Electromagnetic Waves Notice that the electric and magnetic fields are at right angles to one another! They are also perpendicular to the direction of motion of the wave. This picture defines the coordinate system we will use in our discussion. Wave propagates along the x-axis. The electric field varies in the y-direction and the magnetic field in the z-direction.

  16. Wave Motion • Changing electric and magnetic fields create a wave. • Electric field creates a magnetic field • Magnetic field creates an electric field

  17. em waves

  18. Electromagnetic Waves Close switch and current flows briefly. Sets up electric field. Current flow sets up magnetic field as little circles around the wires. Fields not instantaneous, but form in time. Energy is stored in fields and cannot move infinitely fast.

  19. Speed of EM Waves We are going to apply Faraday’s Law to the imaginary moving rectangle abcd. Compute the magnetic flux change

  20. Speed of EM Waves We can say the emf around the loop is the sum of the individual emfs going along each straight line segment in the loop We look at the work done in moving a test charge around the loop 2) fem = W/q = Fd/q = Ed = Ey0 = By0v 3) E = Bv

  21. Speed of EM Waves Now we are going to look at the change in electric flux. Set a new imaginary rectangle and play the same game as before. Ampere’s Law:

  22. Speed of EM Waves:

  23. Applying Faraday to radiation

  24. Fields are functions of both position (x) and time (t) Partial derivatives are appropriate This is a wave equation!

  25. The equation’s solution

  26. The speed of light (or any other electromagnetic radiation)

  27. Trasmissione di un’onda e.m. Le onde e.m. sono generate quando cariche elettriche subiscono un’accelerazione. Nel circuito oscillante LC (oscillatore LC) le cariche oscillano, esse emettono onde e.m. la cui frequenza è uguale alla frequenza di oscillazione del circuito: Sul circuito accoppiato (linea di trasmissione) viene indotta una corrente oscillante alla stessa frequenza. In questo secondo circuito il condensatore è stato aperto formando l’antenna dipolare. Questa antenna è costituita da due sbarrette conduttrici (placche del condensatore) alimentate da un generatore di tensione alternata per compensare le perdite di energia. Per t=0 gli estremi delle sbarrette sono carichi e tra di esse c’è un campo elettrico E parallelo ad esse. Attorno alle sbarrette c’è anche un campo magnetico B generato dalla corrente che percorre le sbarre. Questi campi si propagano allontanandosi dall’antenna alla velocità della luce.

  28. Ricezione di un’onda e.m. I segnali radiofonici e televisivi sono formati da onde elettromagnetiche. Quando le onde raggiungono un’antenna ricevente, interagiscono con le cariche elettriche presenti nel filo dell’antenna. Si può utilizzare il campo elettrico o il campo magnetico delle onde. Per utilizzare al meglio il campo elettrico dell’onda, il filo dell’antenna deve essere parallelo al campo elettrico come mostra la figura. Il campo elettrico agisce sugli elettroni del filo e li fa oscillare avanti e indietro lungo il filo. Si genera quindi una corrente oscillante nell’antenna e nel circuito LC a essa connesso. Un condensatore a capacità variabile C e l’induttore nel circuito consentono di selezionare la frequenza dell’onda elettromagnetica desiderata. Cambiando in modo opportuno il valore della capacità si può uguagliare la frequenza di risonanza del circuito alla frequenza dell’onda: in tal caso circola una corrente oscillante più intensa. Per induzione, questa corrente oscillante genera una tensione massima nell’induttanza del secondo circuito accoppiato al primo. Questa tensione costituisce il segnale di comunicazione che può essere poi amplificato ed inviato al circuito della radio, del televisore, del cellulare o di qualsiasi altro mezzo di telecomunicazione.

  29. Generatore di onde em Rivelatore di onde em Generatore di differenza di potenziale ESPERIMENTO DI HERTZ Hertz nel 1886 riuscì per la prima volta a produrre e a rivelare le onde elettromagnetiche di cui Maxwell aveva previsto l’esistenza. Le onde elettromagnetiche furono generate da oscillazioni di cariche elettriche lungo un circuito. La trasmissione delle onde era rilevata da un cerchio di grosso filo di rame interrotto da uno spazio di lunghezza regolabile tra due sferette. Il passaggio di una corrente oscillante nel cerchio di rame si manifestava attraverso una scintilla che illuminava le due sferette Le onde generate con questo apparato avevano una frequenza di 109 Hz

More Related