1 / 39

HST’s Search for Intermediate-Mass Black Holes (IMBHs) in Globular Clusters

HST’s Search for Intermediate-Mass Black Holes (IMBHs) in Globular Clusters. Outline. IMBHs in the Universe? Theory Observational Signatures IMBHs in Globular Clusters? IMBH in Omega Cen? Anderson & vdMarel I (2010, ApJ in press) - HST observations

kuniko
Download Presentation

HST’s Search for Intermediate-Mass Black Holes (IMBHs) in Globular Clusters

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. HST’s Search for Intermediate-Mass Black Holes(IMBHs)in Globular Clusters

  2. Outline • IMBHs in the Universe? • Theory • Observational Signatures • IMBHs in Globular Clusters? • IMBH in Omega Cen? • Anderson & vdMarel I (2010, ApJ in press) - HST observations • vdMarel & Anderson II (2010, ApJ, in press) - models • Outlook & Conclusions Roeland van der Marel - Space Telescope Science Institute marel@stsci.edu http://www.stsci.edu/~marel

  3. Stellar mass BHs(3-15 M): Endpoint of the life of massive stars Observable in X-ray binaries 107-109 in every galaxy Supermassive BHs(106-109 M): Generate the nuclear activity ofactive galaxies and quasars ~1 in every galaxy Known Black Holes (BHs)in the Universe Roeland van der Marel - Space Telescope Science Institute marel@stsci.edu http://www.stsci.edu/~marel

  4. Intermediate mass BHs: Mass range ~ 102 - 105 M Questions: Is there a reason why they should exist? Is there evidence that they exist? Status and Progress: These questions can be meaningfully addressed No consensus yet Intermediate-MassBlack Holes (IMBHs) Roeland van der Marel - Space Telescope Science Institute marel@stsci.edu http://www.stsci.edu/~marel

  5. Possible Mechanisms for IMBH Formation • Primordial • From Population III stars • As part of Supermassive BH formation • Dense star cluster evolution Roeland van der Marel - Space Telescope Science Institute marel@stsci.edu http://www.stsci.edu/~marel

  6. What processes might reveal IMBHs? • Dynamics  influence on other objects(low-luminosity/late-type galaxies) • Accretion  X-rays (ULXs) • Gravitational lensing  brightening / distortion of background objects (LMC/bulge) • Progenitors output products(metals, background light, …) • Space-time distortion Gravitational Waves(LIGO/LISA?) Roeland van der Marel - Space Telescope Science Institute marel@stsci.edu http://www.stsci.edu/~marel

  7. Dynamical Evolution of Star Clusters • Many physical processes in a dense stellar environment can in principle give runaway BH growth • Negative heat capacity of gravity core collapse • Binary heating normally halts core collapse in systems with N* < 106-7 Rees (1984) Roeland van der Marel - Space Telescope Science Institute marel@stsci.edu http://www.stsci.edu/~marel

  8. A Scenario for IMBH Formation in Star Clusters • When core collapse sets in, energy equipartition is not maintainedthe most massive stars sink to the center first • Calculations show that anIMBH can form due torunaway collisions (PortegiesZwart & McMillan) • Requires initial Trelax < 25 Myror present Trelax < 100 Myr GRAPE 6 Roeland van der Marel - Space Telescope Science Institute marel@stsci.edu http://www.stsci.edu/~marel

  9. Possible IMBH Masses in Globular Clusters? • Theoretical Formation Scenarios • MBH/M ~ 0.1% - 1% • BH mass vs. velocitydispersion correlation • MBH/M ~ 0.1 - 0.2% • Expected masses for typical clusters • MBH ~ 102 - 104 M Tremaine et al. (2002) Roeland van der Marel - Space Telescope Science Institute marel@stsci.edu http://www.stsci.edu/~marel

  10. Accretion Constraints inGlobular Clusters • Globular clusters are gas-poor • Any accretion likely to be radiatively inefficient • Only very small accretion signatures expected • Radio observations provide more stringent constraints than X-ray observations • MBH constraints require various assumptions and extrapolations about gas content and accretion physics • Upper limits for 11 clusters provide (rather uncertain) upper limits just below the M- relation(Maccarone & Servillat 2008) • 1 radio/X-ray detection discussed below Roeland van der Marel - Space Telescope Science Institute marel@stsci.edu http://www.stsci.edu/~marel

  11. Density Profile Constraints in Globular Clusters • Equilibrium cusp around an IMBH has ~ r-1.75 (Bahcall & Wolf 1976)projected mass density cusp slope -0.75 • Light does not follow mass after core collapse (mass segregation) (Baumgardt et al. 2005; Trenti 2006)projected light density cusp slope -0.1 to -0.3large rcore / rhalf • HST archival analysis shows suchintermediate cusp slopes commonin GCs (Noyola & Gebhardt 2006) • Intermediate cusp slopes foundalso without IMBH in post core-collapse(Trenti et al. 2009) Roeland van der Marel - Space Telescope Science Institute marel@stsci.edu http://www.stsci.edu/~marel

  12. Mass Segregation Constraints in Globular Clusters • The presence of an IMBH reduces the amount of mass segregation after core-collapse (Gill et al. 2008) • The IMBH scatters heavy stars that sink to the center back to larger radii • HST/ACS data of NGC 2298 show more mass segregation (from LF at different radii) than expected with an IMBH (Pasquato et al. 2009) MBH/Mclus < 1% Roeland van der Marel - Space Telescope Science Institute marel@stsci.edu http://www.stsci.edu/~marel

  13. Dynamical Detection:Sphere of Influence • Stars directly affected by an IMBH are within thesphere of influence: rBH ~ G MBH / 2 • For typical valuesrBH ≤ 1 arcsec • Dynamical signatures •  ~ r-1/2 • Stars moving with v > vesc • Observational probes • 1) Line-of-sight motions (Doppler) • 2) proper motions (imaging) • Many stars need to be studied, in a crowded region, to detect this  Hubble Space Telescope ideally suited Roeland van der Marel - Space Telescope Science Institute marel@stsci.edu http://www.stsci.edu/~marel

  14. Globular ClusterG1 (Andromeda) • Gebhardt, Rich, Ho (2002, 2005):HST/STIS and Keck spectroscopy Most MassiveM31 Cluster Roeland van der Marel - Space Telescope Science Institute marel@stsci.edu http://www.stsci.edu/~marel

  15. Stellar Motions from Integrated Light (Concept) Without BH With BH Roeland van der Marel - Space Telescope Science Institute marel@stsci.edu http://www.stsci.edu/~marel

  16. G1: Results • Increase in velocitydispersion towards center • MBH ~1.8x 104M • ~2 detection ; rBH ~ 0.035 arcsec • True dynamical significancedisputed (Baumgardt et al. 2003) • Faint X-ray (Pooley & Rappaport 2006; Kong 2007) and radio emission (Ulvestad et al.) within ~1” • Consistent with IMBH, but alternatives not ruled out • Possible nucleus of disrupted galaxy • General implications for GCs unclear Roeland van der Marel - Space Telescope Science Institute marel@stsci.edu http://www.stsci.edu/~marel

  17. Globular ClusterM15 • Well-studied Milky Way Cluster at ~10 kpc • High central density  Core-collapsed Guhathakurta et al. (1996) Sosin & King (1997) Roeland van der Marel - Space Telescope Science Institute marel@stsci.edu http://www.stsci.edu/~marel

  18. M15: DataDiscrete Velocities • 64 HST/STIS velocities in central few arcsec(vdMarel et al. 2002) • + ~1800 ground-based velocities (e.g., Gebhardt et al. 2000) V=13.7 V=18.1 Roeland van der Marel - Space Telescope Science Institute marel@stsci.edu http://www.stsci.edu/~marel

  19. M15: Results • Increase in velocitydispersion towards center • Jeans Models, constant (M/L)* Mdark= 3.2 (+2.2,-2.2)x 103M • Explanations • IMBH? (Gerssen et al. 2002) • Mass segregation(Dull et al. 2003; Baumgardt et al. 2003) • Activity? • No X-ray counterpart (Ho et al. 2003) • No radio counterpart (Maccarone et al. 2004) • Rapid rotation near center unexplained … Roeland van der Marel - Space Telescope Science Institute marel@stsci.edu http://www.stsci.edu/~marel

  20. Globular Cluster Omega Cen • Massive Milky Way GC; large core • Disrupted satellite nucleus? [Spitzer] [HST WFC3 SM4 ERO] Roeland van der Marel - Space Telescope Science Institute marel@stsci.edu http://www.stsci.edu/~marel

  21. Omega Cen: DataGround-based IFU • Two Gemini/GMOS 5x5 arcsecfields [bright stars excluded](Noyola, Gebhardt & Bergm.2008) • Center :  = 23 ± 2 km/s • 14” off-center :  = 19 ± 2 km/s • Dynamical models • MBH = 30,000 - 40,000 (± 10000)M • Mass segregation unlikely to explain this • HST archival imaging • Central density cusp  = 0.08 ± 0.03 • No radio or X-ray detections [HST] Roeland van der Marel - Space Telescope Science Institute marel@stsci.edu http://www.stsci.edu/~marel [Gemini]

  22. Proper Motions vs.Line-of-Sight Velocities • Proper motion advantages • Only imaging required, no spectra • Less observing time needed • Multiplexing: all stars studied simultaneously • More (fainter) stars can be studied • Allows better determination of , closer to cluster enter • Two velocity components observed for each star • Measures velocity anisotropy, constrains models • Proper motion disadvantages • Significant time baselines needed • Very small effect to measure • High telescope stability and calibration accuracy required Roeland van der Marel - Space Telescope Science Institute marel@stsci.edu http://www.stsci.edu/~marel

  23. Proper Motion Measurement • 1 km/s at 5 kpc  0.004 ACS/WFC pixel / 5 year  Hubble Space Telescope • Sophisticated techniques developed(e.g., Anderson & King 2000) • ePSF (effective PSF) fitting • Linear transformations between epochs (breathing/focus) • Other applications • Cluster/field star separation  cleaner CMDs • Local Group Dynamics (LMC/SMC, M31?, ….) wrt background quasars or galaxies (Kallivayalil, Sohn, ….) Roeland van der Marel - Space Telescope Science Institute marel@stsci.edu http://www.stsci.edu/~marel

  24. Omega Cen HST study: Observations & Catalogs • Three Epochs of ACS/WFC data • Photometric Data : 1.2 x 106 stars • Proper Motions : 1.7 x 105 stars (43% high quality) • Completeness via artificial star photometry [approx10x10 arcmin] [2002.5 (PI: Cool)] [2005.0 (Anderson)] [2006.6 (Sarajedini)] [B,R,H] [V, H] [V,I] Roeland van der Marel - Space Telescope Science Institute marel@stsci.edu http://www.stsci.edu/~marel

  25. Omega Cen HST study:CMD & Proper Motions MultipleStellarPops: No PM differences PMx PMy zoom PM CatalogLimit~0.35 M B FieldStars B-R Roeland van der Marel - Space Telescope Science Institute marel@stsci.edu http://www.stsci.edu/~marel

  26. Omega Cen HST study:Visualization [SM4 ERO] [simulated reconstruction] • Construct 3D model of cluster using (for “Hubble 3D” IMAX) • Observed photometry, colors, positions, colors • King model augmentation at large radii • Sequence shown here: zoom to 10’, 3’, 1’, observed PMs Roeland van der Marel - Space Telescope Science Institute marel@stsci.edu http://www.stsci.edu/~marel

  27. Omega Cen HST study:Center Determination [Stellar density] [Proper Motion Dispersion] • Used both contour methods and “pie-slice” methods • Incompleteness corrected where necessary • Also analyzed 2MASS images ResultingCenterAccuracy~ 1 arcsec Roeland van der Marel - Space Telescope Science Institute marel@stsci.edu http://www.stsci.edu/~marel

  28. Omega Cen HST study:Center Confusion [Harris] • Traditional estimates&Noyola et al. pointing12” away fromtrue center • Cause: few bright starsdominate light [van Leeuwen] [Noyola] [2MASS] [HST stars] [HST PM] [Noyola off-center IFU field] Roeland van der Marel - Space Telescope Science Institute marel@stsci.edu http://www.stsci.edu/~marel

  29. Omega Cen HST study:Density Profile • Models with a core or with a shallow cusp( ~ 0.05) both provide an acceptable fit Roeland van der Marel - Space Telescope Science Institute marel@stsci.edu http://www.stsci.edu/~marel

  30. Omega Cen HST study:PM Dispersion Profile • Proper motion dispersion profile consistent with being flat in the central ~20” • No difference in PM dispersion between two Noyola et al. IFU fields (both 19.0  1.5 km/s) Roeland van der Marel - Space Telescope Science Institute marel@stsci.edu http://www.stsci.edu/~marel

  31. Omega Cen HST study:New IMBH assessment • HST data augmented with ground-based data: • Important for constraining larger-radii kinematics • Line-of-sight velocities: 8 different studies • Proper motions: van Leeuwen (2000) [50 years!] • Spherical Jeans Models: • Simple, but sufficient (more detailed techniques: vdVen 06) • Little rotation, ellipticity near cluster center • LOS, PM-radial, PM-tangential predicted separately Roeland van der Marel - Space Telescope Science Institute marel@stsci.edu http://www.stsci.edu/~marel

  32. Omega Cen HST study:Model Parameters • Anisotropy:tan / r = 0.94  0.01 (center) = 1.24  0.10 (large radii) • M/L: 2.6  0.1 (V-band solar units) • D: 4.7  0.1 kpc • Consistent with photometric values ~ 5.0  0.2 kpc Roeland van der Marel - Space Telescope Science Institute marel@stsci.edu http://www.stsci.edu/~marel

  33. Omega Cen HST study:IMBH constraints • Core model: • MBH 7400 M • Cusp model: • MBH=(8700 ± 2900) M • Big densitydifference in 3D • In 2D projectionboth models fit the density/brightness data • IMBH not required in Cen ( 12000 M @1) ( 18000 M @3) Roeland van der Marel - Space Telescope Science Institute marel@stsci.edu http://www.stsci.edu/~marel

  34. Omega Cen HST study:Ultra-Rapid Stars? • Big core: most stars observed near center are not close in 3D • ~100 stars within 3” projected aperture • only 1-6% are within 3” in 3D • No fast moving stars observed (60 km/s), but few expected for reasonable IMBH mass Roeland van der Marel - Space Telescope Science Institute marel@stsci.edu http://www.stsci.edu/~marel

  35. Omega Cen HST study:Equipartition? • PM dispersion measured as function of main sequence mass:  ~ m0.2 • Equipartition predicts E ~ m 2 = constant:  ~ m0.5 • N-body simulations(Trenti & vdM, in prep.): • Omega Cen should have reached it equilibrium  vs. m relation, despite long relaxation time (~9 Gyr) • Equilibrium does not represent equipartition • Typical IMFs may not be able to reach equipartition (Vishniac 1978) due to Spitzer (1969) instability Roeland van der Marel - Space Telescope Science Institute marel@stsci.edu http://www.stsci.edu/~marel

  36. Other Existing Proper Motion Studies • M15 (McNamara et al. 2003) • 704 stars, HST/WFC2 • Consistent with line-of-sight work • Models of combined data set do not resolve IMBH vs. mass segregation degeneracy • 47 Tuc (McLaughlin et al. 2006) • 14,366 stars, HST/WFPC2 and HST/ACS • MBH < 1000-1500 M(upper limit) • Velocity dispersion of 23 blue stragglers (30 10% smaller than RGB stars) provided evidence for mass segregation, but (m) relationship not studied Roeland van der Marel - Space Telescope Science Institute marel@stsci.edu http://www.stsci.edu/~marel

  37. Globular ClusterIMBH Demographics • Unresolved line-of-sight analysis (+radio/X-ray detection) • G1: MBH/Mclus ~ 0.3%, roughly consistent with MBH- • Radio non-detections • 11 (crude) upper limits somewhat below MBH- • Proper motion dynamical analysis • 3 upper limits somewhat above MBH- • Spatial mass segregation analysis • 1 upper limit somewhat above MBH- • Tentative conclusion: IMBHs not very prevalent in GCs at the masses (near MBH-) that can currently be probed Roeland van der Marel - Space Telescope Science Institute marel@stsci.edu http://www.stsci.edu/~marel

  38. Future Work • Radio • More deep observations • Future high-sensitivity instruments EVLA, SKA, etc. • HST Proper motions • Ongoing studies in HST programs by e.g. PIs Chandar, Ford, Chaname • 2 or 3 epochs in hand • 9 clusters • Improved modeling tools to fully use the rich information Roeland van der Marel - Space Telescope Science Institute marel@stsci.edu http://www.stsci.edu/~marel

  39. Conclusions: • The existence of IMBHs in Globular Clusters • Is predicted by some theories • Can be observationally tested • HST proper motion studies • provide a unique tool for this subject • provide a wealth of information on globular cluster structure • Preliminary indications • IMBHs may exist • IMBHs scarce at currently accessible masses Roeland van der Marel - Space Telescope Science Institute marel@stsci.edu http://www.stsci.edu/~marel

More Related