1 / 27

Detection of Differential Item/Test Functioning (DIF/DTF) Using IRT

Detection of Differential Item/Test Functioning (DIF/DTF) Using IRT. Implication and example. Why Study DIF/DTF Using IRT. comparing cultural, ethnic, or gender groups. Meaningful comparisons require that measurement equivalence holds .

lassie
Download Presentation

Detection of Differential Item/Test Functioning (DIF/DTF) Using IRT

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Detection of Differential Item/Test Functioning (DIF/DTF) Using IRT Implication and example

  2. Why Study DIF/DTF Using IRT • comparing cultural, ethnic, or gender groups. • Meaningful comparisons require that measurement equivalence holds. • Classical test theory methods confound “bias” with true mean differences; IRT does not. • In IRT terminology, item/test bias is referred (relative) to DIF/DTF

  3. Defining DIF and DTF • DIF • DBF • DTF • BIARS and IMPACT

  4. Examples of DIF Reference group favored at all levels Focal favored at low theta Reference favored at high theta

  5. Example of DTF for 50-Item Test Most focal group members expected to score about 3 points higher

  6. Procedures for Detecting DIF/DTF • DIF • Parametric • Lord’s Chi-Square • Likelihood Ratio Test • Signed and Unsigned Area Methods • Nonparametric • SIBTEST • Mantel-Haenszel • DTF • Parametric • Raju’s DFIT Method • Nonparametric • SIBTEST

  7. Detecting DIF Using Lord's Chi-Square vi is a vector of the differences in the estimated item parameters for the ith item between the focal and reference groups Si is the variance-covariance matrix for the differences in item parameter estimates Lord’s Chi-Square is sensitive to both uniform and nonuniform DIF.

  8. Detecting DIF Using Lord's Chi-Square • Estimate item parameters and covariances for focal and reference groups separately. • Obtain linking constants, A and K, for putting the focal and reference parameters on a common metric. • Compute Lord’s chi-square to identify DIF items using the reference and transformed focal group parameters and their covariances. • Once the DIF items have been identified, reequate the focal and reference group metrics using only the non-DIF items. • Repeat steps 2 through 4 until the same items are identified on consecutive trials. • This procedure is implemented in the program ITERLINK.

  9. Detecting DIF Using Mantel-Haenszel(1959) • Detect Dif of Dichotomous items • Statistics S*2 *2 • 0<=aMH<正无穷 (0为无DIF, >1有利于参照组,<1有利于目标组) • 美国ETS公司做了改进。

  10. Detecting DIF Using Mantel-aenszel(1959) ETS公司根据MH方法计算的结果,把项目分成三种,A(negligible) B(Moderate) C(Large)

  11. Detecting DIF Using LOG Model • 假设:如果focal group 及Reference group能力相等,则有: • DIF LOG Model:

  12. Detecting DIF/DTF Using SIBTEST • Nonparametric method that can be used to examine individual items or groups of items • Assumes only monotonicity • Requires only item response data • Works well with fairly small samples (250+) • Several variations exist • Original SIBTEST: Uniform DIF • Crossing SIBTEST: Nonuniform DIF • PolySIB: Uniform DIF, polytomous data • MultiSIB: Uniform DIF, multiple dimensions

  13. Using SIBTEST • SIBTEST consists of two executable files: • SIBIN.EXE : interactive, creates input file • SIBTEST.EXE : performs DIF/DTF analyses • Choose “E” for either, “R” for reference, or “F” for focal group • Detailed discussion of running SIBIN and SIBTEST is presented on the web

  14. LOG Model (SPSS) • 在一个测验中,某道题男女同学(以“1”表示男,以“0”表示女)答对的情况(以“1”表示答对,以“0”表示答错)及其总分如下表。问该题对于性别来说是否存在DIF(以男生为参照组,以女性为目标组)。

  15. Example (LOG Model)

  16. Example (LOG Model)

  17. Example (LOG Model)

  18. Explore DIF Using EZDIF EZDIF measures DIF with the Mantel- Haensael and the Logistic Regression procedures. Output files: the common odds ratio a the M-Hx2 the X2 significance level the Holland & Thayer (1988) MH D-DIF statistic the standard error of MH D-DIF an ETS effect size code indicating A/B/C empirical ICC, Logistic Regression output

  19. EZDI RESULT • Mantel-Haenszel and Logistic Regression Analysis of • DIFFERENTIAL ITEM FUNCTIONING • Programmed by Niels G. Waller • RFDATA • Reference Group: F:\JANE\rdata • Focal Group: F:\JANE\fdata • Number of Cases in Reference Group: 1000 • Number of Cases in Focal Group: 1000 • Conditioning Levels • 0 5 9 13 16 19 21 24 27 30 33 36 • 4 8 12 15 18 20 23 26 29 32 35 40 • Note: • Alpha > 1.00 favors Reference Group; Alpha < 1.00 favors Focal Group • D-DIF < 0.00 favors Reference Group, D-DIF > 0.00 favors Focal Group

  20. EZDIF RESULT CONT. • Results for Pass Number: 1 • WARNING: Insufficient Data Found in Level: 0 - 4 • SE • ITEM Alpha X^2 P-Value MH D-DIF (MH D-DIF) • CR 1*** 9.734 312.890 0.000 -5.348 0.332 • CR 2*** 10.182 345.163 0.000 -5.453 0.323 • CR 3*** 8.411 225.039 0.000 -5.004 0.363 • CR 4*** 10.235 237.853 0.000 -5.466 0.400 • CR 5*** 10.368 54.170 0.000 -5.496 0.871 • A 6*** 0.697 8.351 0.004 0.848 0.288 • A 7* 0.750 6.431 0.011 0.675 0.260 • A 8 0.858 0.393 0.531 0.361 0.492 • A 9 0.874 0.380 0.538 0.318 3.344 • A 10* 0.747 6.584 0.010 0.686 0.262 • A 11*** 0.715 8.161 0.004 0.788 0.271 • B 12** 0.638 7.256 0.007 1.056 0.381 • A 13 0.799 2.580 0.108 0.526 0.315 • A 14*** 0.689 8.497 0.004 0.874 0.294 • A 15** 0.737 6.668 0.010 0.718 0.272 • A 16** 0.664 7.446 0.006 0.963 0.345 • A 17 0.789 2.795 0.095 0.558 0.320

  21. EZDIF RESULT cont. • Number of Items Purged in Pass 1: 5 • Item Numbers: • 1 • 2 • 3 • 4 • 5 • Results for Pass Number: 2 • WARNING: Insufficient Data Found in Level: 36 - 40 • SE • ITEM Alpha X^2 P-Value MH D-DIF (MH D-DIF) • CR 1*** 11.796 357.628 0.000 -5.799 0.342 • CR 2*** 12.610 394.589 0.000 -5.956 0.337 • CR 3*** 11.565 280.040 0.000 -5.753 0.385 • CR 4*** 14.334 288.049 0.000 -6.257 0.429 • CR 5*** 14.755 74.687 0.000 -6.325 0.897 • A 6 1.000 0.004 0.951 0.000 0.287 • A 7 1.000 0.003 0.956 0.000 0.259 • A 8 1.000 0.010 0.919 0.000 0.478 • A 9 1.000 0.257 0.612 0.000 2.412

  22. EZDIF RESULT cont.

  23. EZDIF RESULT cont. • Empirical Item Characteristic Curves • Item 1 ETS Code = C R • R 0.00 0.10 0.31 0.52 0.78 0.82 0.85 0.95 0.96 1.00 1.00 9.00 • F 0.00 0.00 0.02 0.13 0.21 0.32 0.37 0.52 0.70 0.84 1.00 9.00 • L 0 5 9 13 16 19 21 24 27 30 33 36 • U 4 8 12 15 18 20 23 26 29 32 35 40 • Item 2 ETS Code = C R • R 0.00 0.12 0.25 0.46 0.55 0.64 0.79 0.87 0.96 0.96 1.00 9.00 • F 0.00 0.00 0.00 0.06 0.06 0.22 0.24 0.36 0.58 0.74 0.93 9.00 • L 0 5 9 13 16 19 21 24 27 30 33 36 • U 4 8 12 15 18 20 23 26 29 32 35 40 • Item 3 ETS Code = C R • R 0.00 0.02 0.03 0.15 0.12 0.23 0.40 0.52 0.74 0.84 0.98 9.00 • F 0.00 0.00 0.00 0.01 0.00 0.01 0.06 0.12 0.15 0.37 0.76 9.00 • L 0 5 9 13 16 19 21 24 27 30 33 36 • U 4 8 12 15 18 20 23 26 29 32 35 40

More Related