160 likes | 258 Views
Interferometer Topologies and Prepared States of Light – Quantum Noise and Squeezing. Convenor: Roman Schnabel. Interferometer Topologies and Prepared States of Light – Quantum Noise and Squeezing. 8:30 R. Schnabel (AEI) Introduction: Why Squeezing is Remarkable
E N D
Interferometer Topologies and Prepared States of Light – Quantum Noise and Squeezing Convenor: Roman Schnabel
Interferometer Topologies and Prepared States of Light – Quantum Noise and Squeezing • 8:30 R. Schnabel (AEI) Introduction: Why Squeezing is Remarkable • 8:45 S. Dwyer (MIT) The Squeezed H1 Detector • 9:08 H. Grote (AEI) The Squeezed GEO Detector • 9:30 Break • 10:00 H. Miao (UWA) Introduction to Radiation Pressure Noise Squeezing and Opto-mechanical Coupling • 10:20 P. Kwee (MIT) Filter Cavity Concepts • 10:35 R. Ward (ANU) Ponderomotive Squeezing Rotator • 10:50 Z. Korth (Caltech) Optomechanically Induced Transparancy • 11:05 B. Barr (Glasgow) Observing Optical Springs with 100g Mirrors • 11:25 G. Cole (Vienna) Quantum Optomechanics • 11:45 H. Kaufer (AEI) Optomechanics with a 50ng Membrane • 12:00 K. Agatsuma (NAOJ) Accurate Quantum Efficiency Measurement • 12:15 D. Friedrich (ICRR) Quantum Radiation Pressure Experiment with a suspended 20mg Mirror • 12:30 Adjourn
Why Squeezing is Remarkable Roman Schnabel Albert-Einstein-Institut (AEI) Institut für Gravitationsphysik Leibniz Universität Hannover
Mirror 1 Mirror 2 Laser 50% Beam splitter Photo diode Gravitational Wave Detection 1) Test masses ~ km 2) Laser light 3) Interference Photo-electric current modulated at GW frequency (“unbiased estimator”) 4) Photo-electric effect 4
N Photo-Electric Current A gravitational wave signal? Photons per time interval Time intervals 5
N Photo-Electric Current No signal, but photon shot noise? Photons per time interval Time intervals 6
Photon Counting Statistics Coherent state Relative shot-noise Probability [rel. units] Photon number N 7
“Squeezed” Counting Statistics Squeezing factor: 10 dB Noise squeezing Probability [rel. units] Squeezing factor: 3 dB Photon number N 8
Photo diode Shot-Noise High power laser 9
Photo diode Shot-Noise Squeezing High power laser Faraday Rotator Squeezed light laser [Caves, Phys. Rev. D 23, 1693 (1981)] 10
Generation of Squeezed Light (PDC) c2-nonlinear crystal: MgO:LiNbO3 or PPKTP Pump field input (cw, 532nm) Squeezed field output (cw, 1064nm) by parametric down-conversion (PDC) Standing wave cavity 11
12.7dB@1064nm / Time Series (c) anti-squeezing @ 5 MHz squeezing parameter: r = 0 r = 0.5 r = 1 r = 1.5 (a) shot noise -12.7 dB (b) squeezing [T. Eberle et al., PRL 104, 251102 (2010)] 13
12.3 dB @ 1550nm / Scaling with Pump 12.3 dB [M. Mehmet et al., Opt. Exp. 19, 25763 (2011)] 14
Frequency Dependent Squeezing X2 X1 Detuned filter cavity [Kimble et al.] [Chelkowski et al., Phys. Rev. A 71, 013806 (2005)]. 15
Interferometer Topologies and Prepared States of Light – Quantum Noise and Squeezing • 8:30 R. Schnabel (AEI) Introduction: Why Squeezing is Remarkable • 8:45 S. Dwyer (MIT) The Squeezed H1 Detector • 9:08 H. Grote (AEI) The Squeezed GEO Detector • 9:30 Break • 10:00 H. Miao (UWA) Introduction to Radiation Pressure Noise Squeezing and Opto-mechanical Coupling • 10:20 P. Kwee (MIT) Filter Cavity Concepts • 10:35 R. Ward (ANU) Ponderomotive Squeezing Rotator • 10:50 Z. Korth (Caltech) Optomechanically Induced Transparancy • 11:05 B. Barr (Glasgow) Observing Optical Springs with 100g Mirrors • 11:25 G. Cole (Vienna) Quantum Optomechanics • 11:45 H. Kaufer (AEI) Optomechanics with a 50ng Membrane • 12:00 K. Agatsuma (NAOJ) Accurate Quantum Efficiency Measurement • 12:15 D. Friedrich (ICRR) Quantum Radiation Pressure Experiment with a suspended 20mg Mirror • 12:30 Adjourn