50 likes | 259 Views
#1. #2. M. I. T. E. Y. U. L. S. G. W. D. A. Hint: To prove ∆BDA ∆ACB, apply Alternate Interior Angles, Reflexive Prop, ASA. Hint: To prove ∆MIT ∆TEM, apply Alternate Interior Angles, Reflexive Prop, AAS. B. C. #4. #3. P. N. O. K. Hint: To prove ∆NOK ∆PKO apply
E N D
#1 #2 M I T E Y U L S G W D A Hint: To prove ∆BDA∆ACB, apply Alternate Interior Angles, Reflexive Prop, ASA Hint: To prove ∆MIT∆TEM, apply Alternate Interior Angles, Reflexive Prop, AAS B C #4 #3 P N O K Hint: To prove ∆NOK∆PKO apply Reflexive Prop, SAS Hint: To prove SLYA∆GWU, SSS
#5 #6 Given: UX bisects VXW A E V O I U X W Hint: To prove ∆AOE∆EIA, apply Reflexive Prop, AAS Hint: To prove ∆VXU∆WXU, apply Angle Bisector & Reflexive Prop, SAS #7 #8 T Given: Q is the midpoint of TS & RP T Y R P Q R C S Hint: To prove ∆TRQ∆SPQ,apply midpoint, vertical angles, and SAS Hint: To prove ∆TRY∆CRY,apply reflexive property & SSS
#9 Given: ED>DC T N R L G I R T H G #10 A D C B E Hint: To prove ∆ABC∆DEC,apply vertical angles, and SsA Hint: To prove ∆TRN∆GLN,apply vertical angles, and ASA #11 #12 Given: RGGH, HTTL, RH = HI, GH = IT Given: TWWE, RDDY, TW=RD, WE=DY T W E R Hint: To prove ∆WET∆DYR, apply SAS D Y Hint: To prove ∆HIT∆RHG, apply SSA or HL
L K #13 M L D C B A O P E F #14 5’ 65◦ 56◦ 65◦ 56◦ 65◦ 56◦ 5’ 65◦ 56◦ 5’ 5’ Hint: To prove ∆BPL∆MDF,apply SAA Hint: ∆KAO is ASA & ∆LCE is SAA A A #16 Given: C is the midpoint BD #15 Given: AC bisects BAD B B C C D D Hint: To prove ∆ABC∆ADC,apply midpoint, reflexive and SAS Hint: To prove ∆ABC∆ADC, apply Angle Bisector & Reflexive Prop, ASA
#17 R R E E C C T T Given: HT || SU, & WH = UP WH || UP, #18 W S U H T P Hint: To prove ∆REC∆CER, apply Reflexive Prop, SsA or HL Hint: To prove ∆WHT∆PUS, apply Alternate Interior Angles and AAS #19 Given: NT = IS #20 T Hint: To prove ∆TIS∆TNW, apply Reflexive Prop, ASA S W Hint: To prove ∆REC∆CTR, apply Alternate Interior Angles, Reflexive Prop, SAS I N