1 / 20

Statistics (cont.)

Statistics (cont.). Psych 231: Research Methods in Psychology. Quiz 10 is due on Friday at midnight Class experiment final drafts due in labs this week. Announcements. Inferential statistics used to generalize back. Population. Sample A Treatment X = 80%. Sample B No Treatment X = 76%.

Download Presentation

Statistics (cont.)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Statistics (cont.) Psych 231: Research Methods in Psychology

  2. Quiz 10 is due on Friday at midnight • Class experiment final drafts due in labs this week Announcements

  3. Inferential statistics used to generalize back Population Sample A Treatment X = 80% Sample B No Treatment X = 76% • 2 General kinds of Statistics • Descriptive statistics • Used to describe, simplify, & organize data sets • Describing distributions of scores • Inferential statistics • Used to test claims about the population, based on data gathered from samples • Takes sampling error into account. Are the results above and beyond what you’d expect by random chance? Statistics

  4. Inferential statistics used to generalize back Population Sample A Treatment X = 80% Sample B No Treatment X = 76% • Two approaches • Hypothesis Testing • “There is a statistically significant difference between the two groups” • Confidence Intervals • “The mean difference between the two groups is between 4% ± 2%” Inferential Statistics

  5. What DOES “confident” mean? • “90% confidence” means that 90% of the interval estimates of this sample size will include the actual population mean CI: μ = (X) ± (tcrit) (diff by chance) 9 out of 10 intervals contain μ Actual population mean μ Using Confidence intervals

  6. Distribution of the test statistic The upper and lower 25% CI: μ = (X) ± (tcrit) (diff by chance) Confidence interval uses the tcrit values that identify the top and bottom tails 2.5% 2.5% A 95% CI is like using a “two-tailed” t-test with with α = 0.05 95% of the sample means Using Confidence intervals

  7. Note: How you compute your standard error will depend on your design CI: μ = (X) ± (tcrit) (diff by chance) Using Confidence intervals

  8. Two types typically • Standard Error (SE) • diff by chance • Confidence Intervals (CI) • A range of plausible estimates of the population mean CI: μ = (X) ± (tcrit) (diff by chance) Note: Make sure that you label your graphs, let the reader know what your error bars are Error bars

  9. 1 factor with two groups • T-tests • Between groups: 2-independent samples • Within groups: Repeated measures samples (matched, related) • 1 factor with more than two groups • Analysis of Variance (ANOVA) (either between groups or repeated measures) • Multi-factorial • Factorial ANOVA Some inferential statistical tests

  10. Observed difference X1 - X2 T = Diff by chance Based on sampling error • Design • 2 separate experimental conditions • Degrees of freedom • Based on the size of the sample and the kind of t-test • Formulae: Computation differs for between and within t-tests CI: μ=(X1-X2)±(tcrit)(Diff by chance) T-test

  11. Reporting your results • The observed difference between conditions • Kind of t-test • Computed T-statistic • Degrees of freedom for the test • The “p-value” of the test • “The mean of the treatment group was 12 points higher than the control group. An independent samples t-test yielded a significant difference, t(24) = 5.67, p < 0.05, 95% CI [7.62, 16.38]” • “The mean score of the post-test was 12 points higher than the pre-test. A repeated measures t-test demonstrated that this difference was significant significant, t(12) = 7.50, p < 0.05, 95% CI [8.51, 15.49].” DepVar Error bars are 95% CIs T-test

  12. Observed variance F-ratio = XA XC XB Variance from chance • More than two groups • Now we can’t just compute a simple difference score since there are more than one difference • So we use variance instead of simply the difference • Variance is essentially an average difference Analysis of Variance (ANOVA)

  13. XA XC XB • Designs • More than two groups • 1 Factor ANOVA, Factorial ANOVA • Both Within and Between Groups Factors • Test statistic is an F-ratio • Degrees of freedom • Several to keep track of • The number of them depends on the design Analysis of Variance (ANOVA)

  14. XA XC XB • 1 Factor, with more than two levels • Now we can’t just compute a simple difference score since there are more than one difference • A - B, B - C, & A - C 1 factor ANOVA

  15. The ANOVA tests this one!! Do further tests to pick between these XA = XB = XC XA ≠ XB ≠ XC XA ≠ XB = XC XA = XB ≠ XC XA = XC ≠ XB XA XC XB Null hypothesis: H0: all the groups are equal Alternative hypotheses • HA: not all the groups are equal 1 factor ANOVA

  16. XA ≠ XB ≠ XC XA ≠ XB = XC XA = XB ≠ XC XA = XC ≠ XB • Planned contrasts and post-hoc tests: • - Further tests used to rule out the different Alternative hypotheses Test 1: A ≠ B Test 2: A ≠ C Test 3: B = C 1 factor ANOVA

  17. Reporting your results • The observed differences • Kind of test • Computed F-ratio • Degrees of freedom for the test • The “p-value” of the test • Any post-hoc or planned comparison results • “The mean score of Group A was 12, Group B was 25, and Group C was 27. A 1-way ANOVA was conducted and the results yielded a significant difference, F(2,25) = 5.67, p < 0.05. Post hoc tests revealed that the differences between groups A and B and A and C were statistically reliable (respectively t(1) = 5.67, p < 0.05 & t(1) = 6.02, p < 0.05). Groups B and C did not differ significantly from one another” 1 factor ANOVA

  18. We covered much of this in our experimental design lecture • More than one factor • Factors may be within or between • Overall design may be entirely within, entirely between, or mixed • Many F-ratios may be computed • An F-ratio is computed to test the main effect of each factor • An F-ratio is computed to test each of the potential interactions between the factors Factorial ANOVAs

  19. Consider the results of our class experiment ✓ • Main effect of cell phone ✓ • Main effect of site type ✓ • An Interaction between cell phone and site type 0.04 -0.78 Factorial design example Resource: Dr. Kahn's reporting stats page

  20. Reporting your results • The observed differences • Because there may be a lot of these, may present them in a table instead of directly in the text • Kind of design • e.g. “2 x 2 completely between factorial design” • Computed F-ratios • May see separate paragraphs for each factor, and for interactions • Degrees of freedom for the test • Each F-ratio will have its own set of df’s • The “p-value” of the test • May want to just say “all tests were tested with an alpha level of 0.05” • Any post-hoc or planned comparison results • Typically only the theoretically interesting comparisons are presented Factorial ANOVAs

More Related