1 / 32

Proteomik

Proteomik. Proteomics. Proteomics ( PROTEOME Analysis) – analysis of the entire PROTEin complement expressed by a genOME (Wilkins et al ., 1996). Proteomics ( PROTEOME Analysis)

linette
Download Presentation

Proteomik

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Proteomik

  2. Proteomics Proteomics (PROTEOME Analysis) – analysis of the entire PROTEin complement expressed by a genOME (Wilkins et al., 1996). Proteomics (PROTEOME Analysis) – analysis of the entire PROTEin complement expressed by a genOME(Wilkins et al., 1996). Professor Maxey C.M. Chung

  3. TIME Magazine July 3, 2000

  4. Ctr Ctr 12 h 12 h 24 h 24 h 72 h 72 h Proteomics Proteomics refers to the large-scale study of the structure & functions of proteins. A) Normal Liver A) B) B) Hepatocellular carcinoma Traditional Western Blot (single candidate analysis) Hsp 27 Colorectal cancer cell lines treated with Butyrate, a HDAC inhibitor Cathepsin D

  5. Proteomics versus traditional approach

  6. Normal Lesion In Situ Invasive Cancer Metastatic Cancer The Proteome: A snapshot of proteins in the cell

  7. Why Proteomics? • The genome is a rather constant entity whereas the proteome is dynamic. (differs from cell to cell, is constantly changing through its interactions with the genome and the environment) • Proteins, not genes, are the functional workhorses of a cell. • In addition, there is a poor correlation between mRNA levels and protein levels in the cell. • Proteomics also allows for the identification of post-translational modifications (eg phosphorylations) which directly regulate activity by switching on/off proteins. • Biofluids (eg blood, GI fluids, urine, CSF, amniotic fluid) do not have corresponding genomes or transcriptomes from which gene expression can be analysed.

  8. NUMBER OF PROTEINS IN A PROTEOME • 20,000 – 40,000 genes in human • Each gene produces 3-6 final modified proteins • Post-translational modifications (PTMs) • Alternate splicing • Number of proteins in higher organism is therefore between 60,000 to 250,000. • 3. A single genome can give rise to different proteomes depending on such variables such as cell cycle, stress response, pathological conditions

  9. PROTEOMICS • The proteome is a dynamic entity • Protein changes resulting from drug treatment, diseases etc • This could be a result of differences in expression and/or post-translational modifications • Note that the GENOME is static

  10. Protein Profiling and separation Protein Identification by Mass Spectrometry Sample Collection Sample Preparation Bioinformatics Pipeline for Clinical Proteomics Clinical Validation Biomarkers / Drug targets / Mechanisms Functional Validation

  11. Protein Elektroforesis Gel Poliakrilamid • SDS-PAGE • Pergerakan molekul bermuatan dalam medan listrik • Sodium lauryl sulfate membentuk kompleks bermuatan negatif dengan protein • 2-merkaptoetanol untuk memutus ikatan disulfida • Pemisahan berdasarkan massa molekul

  12. Elektroforesis 2-D: Pemisahan protein (10.000 jenis) berdasarkan muatan dan ukuran

  13. Western blot: identifikasi protein menggunakan antibodi yang spesifik

  14. Clinical Proteomics in O&G Proteomics. 2006 Jun;6(11):3445-54 Detection of candidate biomarkers in follicular fluid of controls and RSA patients by western blots Spots differentially expressed in patients with RSA Fibrinogen chains, a, b and g Antithrombin

  15. HPLC: Pemisahan Campuran Protein

  16. Protease: hidrolisis ikatan peptida

  17. Spektrofotometri Massa: Penentuan massa molekul • Pembentukan ion. Konversi molekul dalam bentuk padat atau larutan menjadi ion dalam fasa gas • Pemisahan ion dalam fasa gas berdasarkan m/z. • Detektor. Penentuan m/z setiap ion

  18. Matrix-Assisted Desorption Ionization (MALDI) • Protein dicampur dengan komponen matriks (Asam dihidroksi benzoat) • Sinar 337 nmmengeksitasi matriks dan protein melalui mekanisme transfer energi dari matriks ke sampel protein • MALDI menghasilkan ion [M+H]+

  19. Electrospray Ionization (ESI) Tegangan listrik tinggi (3-5 kv) pada larutan Pengupan pelarut (dengan gas hidrogen yang dipanaskan) Menghasilkan ion bermuatan lebih dari satu [M+nH]+n

  20. Surface enhaced laser desorption ionizaiton (SELDI). Profil protein dari cairan tubuh (darah)

  21. Spektrofotometri Peptida

  22. Tandem Mass SpectroscopyPeptida DNA polymerase

  23. Spektrofotometri massa:Kuantitatif Peptida

  24. Diagnosa Pola Proteom

  25. Protein Tagging System:Isolasi dan Pemurnian Protein

  26. Interaksi Protein-ProteinSistem Dua Hibrida Ragi

  27. Interaksi Protein dengan Koimunopresipitasi

More Related