260 likes | 419 Views
A Comprehensive Study of Wavelet Transforms for SPIHT. 台北科技大學資工所 指導教授:楊士萱 學生:廖武傑. 2003/03/27. Outline. Introduction Compression performance Scaling Finite length signal analysis Conclusion. Introduction. Transforms integer-to-integer (reversible) real-to-real(irreversibel) SPIHT
E N D
A Comprehensive Study of Wavelet Transforms for SPIHT 台北科技大學資工所 指導教授:楊士萱 學生:廖武傑 2003/03/27
Outline • Introduction • Compression performance • Scaling • Finite length signal analysis • Conclusion
Introduction • Transforms integer-to-integer (reversible) real-to-real(irreversibel) • SPIHT wavelet domain coding zero-tree coding
Transforms • Integer-to-integer transform: • Real-to-real transform: • Dot products between the two filter masks and the signal.
Wavelet filters for evaluation of coding • Integer-to-integer: 5/3, 9/7-M, 5/11-A, 5/11-C,13/7-T, 13/7-C, 9/7-F (biorthogonal) • Real-to-real: 9/7, 10/18 (biothogonal) Haar, Daubechies 4 taps, 6 taps(orthogonal)
Complexity • Integer-to-integer: 5/3: 9/7-F:
Complexity • Real-to-real: Haar: 9/7:
SPIHT(set partitioning in hierarchical trees) • Zero-tree coding: ->inter-scaling correlation ->energy distribution
Outline • Introduction • Compression performance • Scaling • Finite length signal analysis • conclusion
Compression performance • Test images: lena F16 baboon pepper
Outline • Introduction • Compression performance • Scaling • Finite length signal analysis • Conclusion
Scaling • Optimal scaling factor ->fixed scaling ->variable scaling • Modify SPIHT coding algorithm ->variable sorting threshold
Fixed scaling • Optimal scaling factor for all wavelet decomposition is 1.41421 ,except 9/7-F(1.1496) • With proper scaling, the compression performance is much better for all wavelet filter.
Coding with or without scaling (“Lena”) 5/3 9/7-F
Coding with or without scaling (“Lena”) 13/7-T 13/7-C
Coding with or without scaling (“Lena”) 5/11-A 5/11-C
Finite length signal analysis • Optimal signal extension ->minimal the distortion of the reconstructive signal • Restriction of signal extension ->extension must match the filter-bank.
Extensions for various filters • Odd symmetric extension for odd taps filter. • Even symmetric extension and anti-symmetric for even taps filter. • periodic extension for asymmetric filter. (circular convolution) • Only guarantee the forward-backward transform works.
Extension affects performance Symmetric extension periodic extension
Outline • Introduction • Compression performance • Scaling • Finite length signal analysis • Conclusion
Outline • Introduction • Compression performance • Scaling • Finite length signal analysis • Conclusion
Conclusion • Coding performance associated with filter: • Properties of filter • Energy distribution of wavelet coefficients • Some issues of implementation • The differences between fixed and floating point filtering computation.