840 likes | 1.28k Views
بسمهتعالي. Digital Image Processing. C o l o r Image Processing (Chapter 6). H.R. Pourreza. Preview. Motive - Color is a powerful descriptor that often simplifies object identification and extraction from a scene.
E N D
بسمهتعالي Digital Image Processing Color Image Processing(Chapter 6) H.R. Pourreza H.R. Pourreza
Preview • Motive - Color is a powerful descriptor that often simplifies object identification and extraction from a scene. - Human can discern thousands of color shades and intensities, compared to about only two dozen shades of gray. H.R. Pourreza
Preview H.R. Pourreza
Preview H.R. Pourreza
Preview • Color image processing is divide into two major area: • Full-Color Processing • Pseudo-Color Processing H.R. Pourreza
Color Fundamentals The experiment of Sir Isaac Newton, in 1666. H.R. Pourreza
Color Fundamentals (con’t)c H.R. Pourreza
Color Fundamentals (con’t)c • Basic quantities to describe the quality of light source: • Radiance: Total amount of energy that flows from the light source (in W). • Luminance: A measure of the amount of energy an observer perceives from the light source (in lm) • Brightness: A subjective descriptor that embodies the achromatic notion of intensity and is practical impossible to measure. H.R. Pourreza
Color Fundamentals (con’t) Standard wavelength values for the primary colors H.R. Pourreza
Color Fundamentals (con’t) H.R. Pourreza
Color Fundamentals (con’t) • The characteristics generally used to distinguish one color from another are Brightness,Hue, and Saturation. • Hue: Represents dominant color as perceive by an observer. • Saturation: Relative purity or the amount of white light mixed with a hue • Hue and saturation taken together are called Chromaticity, and therefore, a color may be characterized by its Brightness and Chromaticity. H.R. Pourreza
Color Fundamentals (con’t) • Tri-stimulus values: The amount of Red, Green and Blue needed to form any particular color Denoted by: X, Y and Z • Tri-chromatic coefficient: H.R. Pourreza
Color Fundamentals (con’t) Chromaticity Diagram Green Point = 62% green, 25% red, 13% blue. H.R. Pourreza
Color Fundamentals (con’t) Color Gamut produced by RGB monitors Color Gamut produced by high quality color printing device H.R. Pourreza
Color Models • The purpose of a color model (also called color space or color system) is to facilitate the specification of colors in some standard, generally accept way. • RGB(red,green,blue) : monitor, video camera. • CMY(cyan,magenta,yellow),CMYK (CMY, black) model for color printing. • and HSI model,which corresponds closely with the way humans describe and interpret color. H.R. Pourreza
The RGB Color Models H.R. Pourreza
The RGB Color Models (con’t) H.R. Pourreza
The RGB Color Models (con’t) H.R. Pourreza
The RGB Color Models (con’t) Safe RGB Colors (Safe Web colors) H.R. Pourreza
The RGB Color Models (con’t) H.R. Pourreza
The CMY and CMYK Color Models • Cyan, Magenta and Yellow are the secondary colors of light • Most devices that deposit colored pigments on paper, such as color printers and copiers, require CMY data input. H.R. Pourreza
The HSI Color Models H.R. Pourreza
The HSI Color Models H.R. Pourreza
The HSI Color Models H.R. Pourreza
The HSI Color Models • Converting colors from RGB to HSI H.R. Pourreza
The HSI Color Models • Converting colors from HIS to RGB • RG sector : H.R. Pourreza
The HSI Color Models • Converting colors from HIS to RGB • GB sector : H.R. Pourreza
The HSI Color Models • Converting colors from HIS to RGB • BR sector : H.R. Pourreza
The HSI Color Models H.R. Pourreza
The HSI Color Models RGB H H S S I RGB I H.R. Pourreza
Pseudocolor Image Processing • Pseudocolor (also called false color) image processing consists of assigning colors to gray values based on a specified criterion. • The principal use of pseudocolor is for human visualization and interpretation of gray-scale events in an image or sequence of images. H.R. Pourreza
Intensity Slicing H.R. Pourreza
Intensity Slicing (con’t) H.R. Pourreza
Intensity Slicing (con’t) H.R. Pourreza
Intensity Slicing (con’t) H.R. Pourreza
Gray Level to Color Transformations H.R. Pourreza
Gray Level to Color Transformations H.R. Pourreza
Gray Level to Color Transformations H.R. Pourreza
Gray Level to Color Transformations H.R. Pourreza
Gray Level to Color Transformations H.R. Pourreza
Gray Level to Color Transformations H.R. Pourreza
Basic of Full Color Image Processing Let c represent an arbitrary vector in RGB color space For an image of size M*N, H.R. Pourreza
Basic of Full Color Image Processing H.R. Pourreza
Basic of Full-Color Image Processing • Major categories of full-color Image processing: • Per-color-component processing • Vector-based processing H.R. Pourreza
Basic of Full-Color Image ProcessingColor Transformation Processing the components of a color image within the context of a single color model. Color components of g Color components of f Color mapping functions H.R. Pourreza
Full-Color Image ProcessingColor Transformation CMYK • Some difficulty in interpreting the HUE: • Discontinuity where 0 and 360º meet. • Hue is undefined for a saturation 0 RGB HSI H.R. Pourreza
Full-Color Image ProcessingColor Transformation: Modify the Intensity H.R. Pourreza
Full-Color Image ProcessingColor Transformation: Color Complement H.R. Pourreza
Full-Color Image ProcessingColor Transformation: Color Complement H.R. Pourreza
Full-Color Image ProcessingColor Transformation: Color Slicing Motive: Highlighting a specific range of colors in an image • Basic Idea: • Display the color of interest so that they stand out from background • Use the region defined by the colors as a mask for further processing H.R. Pourreza