1 / 14

ICOM 4015 Advanced Programming

ICOM 4015 Advanced Programming. Lecture 5 B ú squeda y Ordenamiento III Reading: LNN Chapters 9, 10 & 16. Prof. Bienvenido Velez. Busqueda y Ordenamiento III Outline. Sorting Algorithms Insertion Sort Design Implementation Analysis QuickSort Design Implementation Analysis. 1. 2.

marvinv
Download Presentation

ICOM 4015 Advanced Programming

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ICOM 4015 Advanced Programming Lecture 5 Búsqueda y Ordenamiento III Reading: LNN Chapters 9, 10 & 16 Prof. Bienvenido Velez ICOM 4015

  2. Busqueda y Ordenamiento III Outline • Sorting Algorithms • Insertion Sort • Design • Implementation • Analysis • QuickSort • Design • Implementation • Analysis ICOM 4015

  3. 1 2 3 4 5 6 7 8 9 Insertion SortThe Algorithm 1 1 3 2 4 3 5 4 2 5 7 7 8 8 9 9 6 6 ICOM 4015

  4. Example 1 - main function // sort.cc // Implements insertion sort algorithm #include <iostream> // Forward declarations template <class TYPE> void insertionSort(TYPE list[], long numElements); template <class TYPE> void swap(TYPE& a, TYPE& b); template <class TYPE> void printArray(TYPE list[], long numElements); main() { int a[] = {34, 56, 28, 86, 52, 1, 92, 44, 19, 78}; int b[] = {19, 1, 28, 34, 44, 52, 56, 78, 86, 92}; const long elements = 10; cout << "Original array:" << endl; printArray(a, elements); insertionSort(a, elements); cout << "Sorted array:" << endl; printArray(a, elements); cout << "Original array:" << endl; printArray(b, elements); insertionSort(b, elements); cout << "Sorted array:" << endl; printArray(b, elements); return 0; } ICOM 4015

  5. Sorting Function Contract • Parameters • An array of some type • The number of valid elements in array • Changes to parameters • Array parameter sorted • Return value (void) • None • Side effects • None ICOM 4015

  6. Insertion Sort // Definitions of local auxiliary functions template <class TYPE> void printArray(TYPE list[], long numElements) { for (long i=0; i<numElements; i++) { cout << "list[" << i << "] = " << list[i] << endl; } } template <class TYPE> void swap(TYPE& a, TYPE& b) { TYPE temp = a; a = b; b = temp; } template <class TYPE> void insertionSort(TYPE list[], long numElements) { int comparisons = 0; for (long i=1; i<numElements; i++) { long j = i; while ((j>0) && (list[j] < list[j-1])) { comparisons ++; swap(list[j], list[j-1]); j--; } } cout << "Insertion sort comparisons = " << comparisons << endl; } ICOM 4015

  7. Inseertion Sort Output [bvelez@amadeus] ~/icom4015/lec13 >>./sort Original array: list[0] = 34 list[1] = 56 list[2] = 28 list[3] = 86 list[4] = 52 list[5] = 1 list[6] = 92 list[7] = 44 list[8] = 19 list[9] = 78 Insertion sort comparisons = 22 Sorted array: list[0] = 1 list[1] = 19 list[2] = 28 list[3] = 34 list[4] = 44 list[5] = 52 list[6] = 56 list[7] = 78 list[8] = 86 list[9] = 92 Original array: list[0] = 19 list[1] = 1 list[2] = 28 list[3] = 34 list[4] = 44 list[5] = 52 list[6] = 56 list[7] = 78 list[8] = 86 list[9] = 92 Insertion sort comparisons = 1 Sorted array: list[0] = 1 list[1] = 19 list[2] = 28 list[3] = 34 list[4] = 44 list[5] = 52 list[6] = 56 list[7] = 78 list[8] = 86 list[9] = 92 [bvelez@amadeus] ~/icom4015/lec13 >> ICOM 4015

  8. Insertion SortAnalysis ICOM 4015

  9. 5 2 1 1 8 4 3 3 9 9 7 7 4 8 2 5 6 6 QuickSort: The Algorithm pivot partition partition ICOM 4015

  10. Recursive Implementation of QuickSort template <class TYPE> void quickSort(TYPE list[], long numElements) { internalQuickSort(list, numElements, 0, numElements-1); } template <class TYPE> static void internalQuickSort(TYPE list[], long numElements, int low, int high) { if (low < high) { long pivotLocation = partition(list, numElements, low, high); internalQuickSort(list, numElements, low, pivotLocation-1); internalQuickSort(list, numElements, pivotLocation+1, high); } return; } ICOM 4015

  11. Partition template <class TYPE> static long partition(TYPE list[], long numElements, int low, int high) { cout << "low " << low << " high " << high << endl; TYPE pivot = list[low]; long pivotLocation = low; for (long i=low+1; i<=high; i++) { if (list[i] < pivot) { pivotLocation++; swap(list[i], list[pivotLocation]); } } swap(list[low],list[pivotLocation]); return pivotLocation; } ICOM 4015

  12. Quicksort Best Case Analysis Tq(N) ~ time to quicksort an N element array Tq(N) = Tpartition(N) + 2Tq(N/2) Time to partition Time to sort 2 halves Tq(N) = O(NlogN) Demonstrated both experimentally and theoretically that average case is also O(NlogN) ICOM 4015

  13. QuickSortAnalysis and Comparison ICOM 4015

  14. Sorting summary of concepts • Insertion Sort • Worst/average case O(N2) • Sensitive to input entropy • Examples of other O(N2) algorithms • SelectionSort, BubbleSort,ShellSort • Quicksort • Worst case O(N2) • Best/average case O(NlogN) • Not sensitive to entropy • Other O(NlogN) algorithms • MergeSort • O(NlogN) is an optimal bound on comparison based sorting algorithms ICOM 4015

More Related