270 likes | 278 Views
Learn how to compute the reliability of a scale score using Classical Test Theory and Cronbach's alpha. Explore the factors influencing scale reliability, such as item correlation and the number of items.
E N D
CONCEPTS TO BE INCLUDED • Classical test theory • Scale reliability • Cronbach’s alpha
AIM • Know how to compute the reliability of a scale score • Understand why scale reliability depends on • The correlation among items • The number of items
STEPS IN SCALE CONSTRUCTION Scale analysis Conceptualization Pilot testing 3 4 5 6 1 2 Validation Collection of data Item writing
SCALE ANALYSIS: RELIABILITY Reliability = --------------------------- = ------------------------------- truevariation truevariation (truevariation + measurement error) totalvariation
RELIABILITY Reliability is repeatability IQ score Susan IQ score Vera Test version A on January 23: 122 133 Test version A on January 24: 119 136 Test version B on January 25: 120 134 Individualdifferences error error
CALCULATING RELIABILITY • Hans 120 • Monique 122 • Vera 134 • Peter 101
CLASSICAL TEST THEORY (CTT) • Observed score = latentscore + measurement error
CTT: EXAMPLE • Intelligent test with 10 questions • Patrick has 8 questions correct • Measurementerrors? • Unintelligent but lucky? 8 = 7 + 1 • Intelligent but unlucky? 8 = 9 – 1 • No measurement error? 8 = 8 + 0 Measurement error Correct
CALCULATING MEASUREMENT ERROR VARIANCE Patrick’sSum score : item 1 score … + item 10 score = 1 + 1 + 0 + 0 + 1 + 1 + 1 + 1 + 1 + 1 = 8 In general we have variables: Sumscore = : item 1 score + … item 10 score
CALCULATING VARIANCE OF SUMS • Variance(A + B) = Variance(A) + Variance(B) + 2 * Covariance(A, B) • Sumscore = itemA + itemB • Variance(sumscore) = Variance(itemA+itemB) = Variance(itemA) + Variance(itemB) + 2 * Covariance(itemA, itemB)
VARIANCE OF SUMS: EXAMPLE • Var(itemA) = 1 • Var(itemB) = 1 • Covariance = 0.9 (correlation = 0.9) • Variance(sumscore) = Var (itemA) + Var (itemB) + 2 * Cov (itemA, itemB) = 1 + 1 + 2 * 0.9 = 2 + 1.8 = 3.8
Measurement error item A Item A score True score
Measurement error item A Item A score True score Item B score Measurement error item B
Measurement error item A Item A score True score Correlation Item B score Measurement error item B
CALCULATING RELIABILITY Reliability = --------------------------- = ------------------------------- truevariation truevariation (truevariation + measurement error) totalvariation
VARIANCE OF SUMS: EXAMPLE • Var(itemA) = 1 • Var(itemB) = 1 • Covariance = 0.9 (correlation = 0.9) • Variance(sumscore) = Var (itemA) + Var (itemB) + 2 * Cov (itemA, itemB) = 1 + 1 + 2 * 0.9 = 2 + 1.8 = 3.8 Reliability = 1.8 / 3.8 = 0.47
VARIANCE OF SUMS: ANOTHER EXAMPLE • Var(itemA) = 1 • Var(itemB) = 1 • Covariance = 0.1 (correlation = 0.1) • Variance(sumscore) = Var (itemA) + Var (itemB) + 2 * Cov (itemA, itemB) = 1 + 1 + 2 * 0.1 = 2 + 0.2 = 2.2 Reliability = 0.2 / 2.2 = 0.09
VARIANCE OF SUMS: ANOTHER EXAMPLE • Example A: Covariance = 0.9 (Correlation = 0.9) Reliability = 0.47 • Example B: Covariance = 0.1 (Correlation = 0.1) Reliability = 0.09 • The higerthecorrelationbetween items, thehigherthereliability
VARIANCE OF SUMS: ANOTHER EXAMPLE • Example A: Covariance = 0.9 (Correlation = 0.9) Reliability = 0.47 • Example B: Covariance = 0.1 (Correlation = 0.1) Reliability = 0.09 The higherthecorrelationbetween items, thehigherthereliability The more items you have, thehigherthereliability
VARIANCE OF SUMS: ANOTHER EXAMPLE • Variance(A + B) = Variance(A) + Variance(B) + 2 * Covariance(A, B) • Variance(A+B+C) = Var(A) + Var(B) + Var(C) + 2Cov(A,B) + 2Cov(A,C) + 2Cov(B,C) • Variance(A+B+C+D) = Var(A) + Var(B) + Var(C) + Var(D) + 2Cov(A,B) + 2Cov(A,C) + 2Cov(A,D) + 2Cov(B,C) + 2Cov(B,D) + 2Cov(C,D)
LET’S PUT IN NUMBERS • Assumeallvariances are 1 and allcovariances are 0.2 • Variance(A + B) = Variance(A) + Variance(B) + 2 * Covariance(A, B) 2 + 0.4=2.4 reliability is 0.4/2.4 = 0.17 • Variance(A+B+C) = Var(A) + Var(B) + Var(C) + 2Cov(A,B) + 2Cov(A,C) + 2Cov(B,C) 3 + 1.2 = 4.2 reliability is 1.2 / 4.2 = 0.29 • Variance(A+B+C+D) = Var(A) + Var(B) + Var(C) + Var(D)+ 2Cov(A,B) + 2Cov(A,C) + 2Cov(A,D) + 2Cov(B,C) + 2Cov(B,D) + 2Cov(C, D) 4 + 2.4 reliability is 2.4 / 6.4 = 0.38
reliability reliability Correlationbetween items = 0.5 Correlationbetween items = 0.1 Number of items Number of items
CRONBACH’S ALPHA • Is a way of calculatingreliability • K = number of items • Chronbach’salpha = reliability * K / (K-1)
LET’S CALCULATE CRONBACH’S ALPHA • Assumeallvariances are 1 and allcovariances are 0.2 • Variance(A+B+C) = Var(A) + Var(B) + Var(C) + 2Cov(A,B) + 2Cov(A,C) + 2Cov(B,C) = 3 + 1.2 = 4.2 reliability is 1.2 / 4.2 = 0.29 • Cronbach’salpha: reliability * K / (K-1) • In this case there are 3 items, so K = 3 Cronbach’salpha = 0.29 * 3/(3-1) = 0.48
THIS MICROLECTURE • Correlations between items reflect the extent to which items measure the same thing reliably • This ‘same thing’, can only be the true score (without error) • The higher the correlations between the items on the scale, the higher the reliability of the scale score • The more items the scale consists of, the higher the reliability of the scale score • Cronbach’s alpha is one of many ways to compute the reliability of the scale score