1 / 39

Large Eddy Simulation of the flow past a square cylinder

Large Eddy Simulation of the flow past a square cylinder. J. S. Ochoa, N. Fueyo Fluid Mechanics Group University of Zaragoza Spain. Norberto.Fueyo@unizar.es. Contents. Aim Turbulence Modelling Case considered Modelling Numerical details Implementation in PHOENICS Results Conclusions.

megan
Download Presentation

Large Eddy Simulation of the flow past a square cylinder

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Large Eddy Simulation of the flow past a square cylinder J. S. Ochoa, N. Fueyo Fluid Mechanics Group University of Zaragoza Spain Norberto.Fueyo@unizar.es

  2. Contents • Aim • Turbulence Modelling • Case considered • Modelling • Numerical details • Implementation in PHOENICS • Results • Conclusions

  3. Aim

  4. Turbulence modelling • Simulation of turbulent flows • Reynolds Averaged Navier-Stokes equations • Large Eddy Simulation • Direct Numerical Simulation • LES: Filtering Simulated Modellled

  5. Case considered • Experiment of Lyn & Rodi • Square rod in water flow Inlet U Outlet y H x • Flow parameters Square cylinder side Inlet velocity Reynolds number Channel width Channel height Flow H = 40 mm U = 535 mm/s Re = UD/n = 21400 W = 400 mm H = 560 mm Water

  6. Modelling

  7. Equations • Governing equations • Continuity • Momentum • Filtered equations • Continuity • Momentum

  8. Closure (Smagorinsky) • Sub-grid Reynolds stresses • Turbulent viscosity Turbulence generation function Smagorinsky constant YPLS Filter size Constant

  9. Numerical details

  10. Domain y H = 40 mm y H 14H z z x Flow Inlet Flow Outlet 4.5H H 15H x 4H z • Dimensions

  11. Grid x y z z x y z • 3D grid:120x102x20

  12. Discretisation details • Convective term • Temporal term • Timestep calculation using CFL limit as guidance Van Leer scheme Implicit 3rd order Adam-Moulton scheme Explicit 2nd order Adam-Bashforth scheme CFL Condition

  13. Solving • Diferential equations solved • Continuity (Pressure) • Momentum (Velocities) • Scalar marker f • Auxiliary variables • Density • Viscosity • Eddy-viscosity (blue) (red)

  14. Boundary conditions • Flow • Square-cylinder walls • No-slip condition • Logarithmic functions for filtered velocity Simmetry wall (Free-slip) Outflow (fixed pressure) Velocities Mass flux Simmetry wall (Free-slip)

  15. Calculation of integral parameters • Strouhal number • f – vortex-shedding frequency • Drag & lift coefficients

  16. Implementation in PHOENICS, 1 • Time and spatial definitions GROUND User Module Q1 file Major PIL settings • Time • CFL Condition Group 2. STEADY=T TLAST=GRND • Domain Groups 3,4 and 5. GRDPWR(X,.. Y • High order time scheme Z Adam-Moulton Scheme Common formulation of PHOENICS • Spatial discretisation Group 8. SCHEME(VANL1,U1,V1,W1) Sources added Adam-Bashforth Scheme • Time discretisation Group 13. Common formulation of PHOENICS PATCH(TDIS,CELL,... COVAL(TDIS,U1,FIXFLU,GRND) V1 Sources added W1

  17. Implementation in PHOENICS, 2 • Properties and LES model GROUND User Module Q1 file Major PIL settings • Variables solved P1,U1,V1,W1,MIXF Group 8. • Smagorinsky model • Variables stored RHO1,CON1E,CON1N,CON1H YPLS GENK=T Velocity gradients, GEN1 • Turbulence model Group 9. ENUT=GRND • Dump data • Integral parameters Switching Special grounds RG( ),IG( ),LG( )

  18. Computing • Parallel cluster • Boadicea: Beowulf-Oriented Architecture for Distributed, Intensive Computing in Engineering Applications • Installed at Fluid Mechanics Group (University of Zaragoza, Spain) • 66 CPU’s (33 dual nodes) • Pentium III, 550 MHz • 256 Mb memory/node • 10Gb disk space/node • Linux • PHOENICS V3.5

  19. Results • 2D analysis • 3D simulation

  20. 2D: Influences Van Leer scheme Sampling Point 2H • Vertical velocity V1 Van Leer No scheme V1 (m/s) t (s)

  21. 2D: Influences of Adam-Moulton scheme Sampling Point 2H • Vertical velocity V1 Adam Moulton No scheme V1 (m/s) t (s)

  22. 2D: Influences of Smagorisnky model Sampling Point 2H • Vertical velocity V1 Smagorinsky No model V1 (m/s) Combined effect t (s)

  23. 2D: Combined effect Sampling Point 2H • Vertical velocity V1 All models and schemes No model V1 (m/s) Smagorinsky model Combined effect t (s)

  24. 2D: Grid influence Domain length H • Mean axial velocity along the centreline 120x102 240x186 120x84 360x252 Uaxial (m/s) 120x84 grid 240x168 grid 360x252 grid 120x102 grid

  25. Animation of results • Mixture-fraction contours

  26. 3D Results • Integral parameters

  27. 3D: Comparison among data, 1 Uaxial (m/s) Domain length H • Experimental and this work data

  28. 3D: Comparison among data, 2 Uaxial (m/s) Domain length H • Numerical, experimental and this work data

  29. 3D: Streamlines • Comparison between experimental and numerical streamlines Experimental This work

  30. 3D: Iso-vorticity contours Vorticity Vorticity Vorticity • Streamwise • Spanwise

  31. 3D: Turbulence viscosity (ENUT) ENUT ENUT • Streamwise

  32. 3D: Comparison between LES & RANS, 1 Sampling Point 2H • Vertical velocity V1 LES K-epsilon Uaxial (m/s) t (s)

  33. 3D: Comparison between LES & RANS, 2 Uaxial (m/s) Domain length H • Mean axial velocity on the center plane LES LES K-epsilon

  34. Animation: mixf

  35. Animation: spanwise vorticity

  36. Speedup Ideal This work Speedup Processors used (n) Domain split along z direction Grid 120x102x20 1 processor 24 min/dt 30 sweeps/dt (implicit time) 12 processors 3 min/dt • Computing time: approx 11 hr (on 12 processors)

  37. Conclusions • LES implemented to PHOENICS • Agreement with both numerical and experimental data • High order schemes increase accuracy • Flow well predicted • Superiority of LES over RANS • Reasonable time using parallel PHOENICS v3.5

  38. Further work • Large Eddy Simulation of Turbulent flames

  39. End of presentationThank you

More Related