1 / 35

Payload Control System (NASDAT, EIP)

Payload Control System (NASDAT, EIP). ER-2 and WB-57 Implementation NASA ASF, 9/14/2010. Contents. Introduction Requirements Implementation EIP NASDAT Network Control System Test Plan Schedule / Milestones Conclusions / Action Items Acronym List (Appendix). Introduction.

merrill
Download Presentation

Payload Control System (NASDAT, EIP)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Payload Control System (NASDAT, EIP) ER-2 and WB-57 Implementation NASA ASF, 9/14/2010

  2. Contents • Introduction • Requirements • Implementation • EIP • NASDAT • Network • Control System • Test Plan • Schedule / Milestones • Conclusions / Action Items • Acronym List (Appendix)

  3. Introduction • This review will… • Cover the preliminary requirements & design for the ER-2 and WB-57 EIP and NASDAT units. • Demonstrate the ASF is ready to proceed with detailed design. • This review will not… • Be a review of the Global Hawk system (it’s different!) • Cover, in any significant detail, payload communications or the InMar-SAT system. ASF – Airborne Sensor Facility @ NASA ARC EIP – Experimenter Interface Panel; an instrument electrical interface. NASDAT – NASAAirborne Science Data Acquisition and Transmission unit

  4. Key Requirements • Level 1 (NASA Airborne Science / HQ): Sensor Web – A distributed and coordinated network of sensors which collectively act as a single “macro- instrument.” (Delin, Sensors Magazine 4/1/2004)

  5. Key Requirements • Level 2/3 (ER-2 & WB-57 Systems):

  6. Requirements (25A x 2 ckts) (79A) (50A x 2 EIPs) (72Ax2 EIPs) (79A) (30A) (30A) DC CURRENT REQUIREMENT: >80A per EIP (2.8kW) AC CURRENT REQUIREMENT: 50A / Ф, per EIP

  7. EIP Implementation EIP Functional Block Diagram:

  8. EIP Implementation • A modular, PCB-based design reduces wiring and simplifies assembly & maintenance w/rt to the Global Hawk version. SSPC Module (4) AC Distribution Module Legacy Module PRELIMINARY – FOR INFORMATION ONLY DC Distribution Module Ethernet Module (Monitor Module Not Shown)

  9. Support 5 experiments with 3 ‘Misison Critical’ and 1 (modified) ‘Air Data’ connector(s) Drop to 4 PWR connectors (5 command relays / EIP); EIP Implementation J6-J9 change to D38999/21-16 Provide analysis for 50A/circuit (same connector) Fuse internal circuit internally Replace J13 & J14 with Ethernet; leave aircraft wire in place & use as needed. Ship-side signals (DC, AC, Control input) connectors are unchanged.

  10. EIP Implementation EIP Front Panel: Mission Critical 15A AC/DC & Control 15A AC/DC & Control 2x50A DC Output Control & Data Input Mission Critical Mission Critical 15A AC/DC & Control 15A AC/DC & Control 3Ф AC Input Legacy Output 8x100 Mb Ethernet 4x1Gb Ethernet Adapter harnesses will be available to fold Mission Critical & Control into Legacy Output connectors

  11. EIP Implementation • Legacy EIP Power (Mixed AC/DC) Connector Using 3 #16 DC circuits, 2 with SSPCs @ 17.5A trip, 1 fused @ 10A Tie shields at backshell (TBD) • - GH safety circuit used for command circuit – lose NC contact (except for legacy connector) • GPS splitter designed-in but not installed; GPS socket removed in PWR connector • IRIG-B moved to PWR connector (GH style)

  12. L1/L2/Omnistar GPS (coax) (not provided for WB-57/ER-2) 3Ф, 400Hz AC Circuit #1 (15A/Ф)* 3Ф, 400Hz AC Circuit #2 (15A/Ф)* 28VDC Circuit #1 @ 15A 28VDC Circuit #2 @ 15A IRIG-B (coax) Command Relay (N.O. & COM) @ 10A EIP Implementation • Standard Instrument Power Connector (Amphenol D38999/20WG16SN) • 16 x AWG #16 contacts, same pinout as Global Hawk EIP * - Recommended loading varies per plane & based on SAE50881 analysis

  13. EIP Implementation

  14. EIP Implementation • DC In & Hi-Power Out connectors are same as prior design

  15. EIP Implementation • AC In/Out SAE50881 analysis • Dependent on aircraft wiring more than EIP • Aircraft circuit breakers have high maximum trip: • ER-2/WB-57 historical usage implies greater current ratings than SAE50881 analysis (based on 6TC breakers). • Recommendations: • Caution with high bundle counts & heavy loading • Update analysis with actual ER-2/WB-57 breaker unit data • Incorporate ER-2/WB-57 breakers in EIP environmental tests

  16. EIP Implementation • Modified Legacy Data Connector (page 1 of 2) NEW ASSIGNMENTS: ZJ: INTERLOCK #2 ZM: AIRCRAFT GROUND ZN: ALTITUDE SWITCH #2 N.O. ZP: ALTITUDE SWITCH #2 COM ZQ: LANDING GEAR #2 N.O. ZR: LANDING GEAR #2 COM ZS: FAIL LAMP DRIVE #2 ZT: SPARE

  17. EIP Implementation • Mission Critical / Aircraft Data Connector (page 2 of 2)

  18. EIP Implementation • Mission Critical Connector (Amphenol TVP06RW9-9S) • High-density D38999/III, 9x AWG #23 contacts • Will supply conversion adapters to legacy connector Redundant Interlocks Ground Landing Gear COM N.O. Redundant Fail Drive COM N.O. Altitude Switch

  19. EIP Implementation • Solid State Power Controllers (SSPCs): • DC relay, over-current and arc-fault breaker in 1.5in3 • Trip state, voltage & current monitor • Low power dissipation: • Ron = 6mΩ @ 20A (120mW), no relay coil • Inputs from command relays are opto-isolated on PCB (<20mA/input) • Fails to ‘open’ state • -55ºC to 85ºC operation • Surge tolerant (48V @ 1s, 80V @ 100ms) • Units for power circuits will be permanently ‘CLOSED’ • Status: Rev- PCB received; testing in process

  20. EIP Implementation • DC Monitor Module: • Revised form factor of Global Hawk design • UDP Status Packet Contents: • Voltage & Current for each 15A DC circuit (not for high-power) • Trip status for all SSPCs • Interlock & Fail line status for each payload • (1) External temperature (AD5626) • Humidity • EIP Internal Health Temperatures • Status: Schematic Design • Legacy Module: • Patches Control/Data input to Legacy Output and Mission Critical Connectors • Leverages PCB solder-tail connector technology • Status: Schematic Design Analog Devices AC2626 Temperature Probe

  21. EIP Implementation • AC Distribution PCB (Rev A): • Layer Stackup (0.125” Thick): • Top: Shield • Inner 1-2: Ckts. 1 & 2 ФA • Inner 3: Shield • Inner 4-5: Ckts. 1 & 2 ФB • Inner 6: Shield • Inner 7-8: Ckts. 1 & 2 ФC • Inner 9: Shield • Inner 10: Circuit 1 Neutral • Inner 11: Shield • Inner 12: Circuit 2 Neutral • Bottom: Shield • Layer Spacing: 4.15 mils (min) • Max Electric Field: 120.4 V/mil • FR4 DBV: 1100V/mil • Status: Ready for Fabrication DBV – Dielectric Breakdown Voltage

  22. EIP Implementation • Ethernet Module: Sixnet APSwitch • 8x 100Mbit ports, 4x Gigabit ports • 1x 100Mbit port internal to EIP (use for monitor) • Interconnects: MIL-DTL-38999/III Quadrax • Part #: 25-8 D38999/III (8 quadrax inserts) • Status: Functional & environmental evaluation.

  23. Network Implementation • Managed mesh w/ RSTP configured as 1G ring has two levels of fault tolerance: • Ring topology has built in redundancy • 1G over Cu = 2 quadrax (break one, down to 100Mbit) Image from Sixnet Ethertrak Software Users Manual RSTP – Rapid Spanning Tree Protocol – allows redundant connections in a managed network

  24. Network Implementation • Network impacts on system: • 1G ring means 4 quadrax / EIP & bulkheads • Cable: Tensolite NF24Q100 • Bulkheads: Amphenol TBD (19-18 pattern) • Ring network requires infrastructure power • 2 sets of 28VDC @ ~0.5A / EIP • Fused internally in each EIP • Spare pins available on control input harness

  25. Network Implementation • Worst-Case 1000BASE-T Cabling: • 2 Ethernet Switches, 4 ER-2 Bulkheads, all Tensolite NF24Q100 + Quadrax • TIA/AIA-568b (CAT6) vs. ER-2 Quadrax: • Conclusion: ER-2 IL meets worst-case CAT6 IL specification IL: Insertion Loss (i.e. attenuation)

  26. Control Implementation • Barebones Implementation (Now) • Low risk: Uses existing switch panel and wiring • Optimized Implementation (Later) • Uses Ethernet for indication and/or control • Requires additional electronics box to translate switches & lamp drives to/from network packets • (WB-57 only) FAIL => FAIL/STATUS • Logic Low: FAIL (red lamp on) • Logic High: RUNNING (red & blue lamps off) • Switching @ TBD kHz: STATUS (blue light on)

  27. Control Implementation BAREBONES OPTIMIZED #1 OPTIMIZED #2

  28. Test Plan • All unique designs will be qualification tested for vibration & thermal / altitude • Test procedures for each major assembly • EIP Test Bench • Developed for GLOPAC EIPs • Automated I/R/C “buzz-out” • Automated monitor calibration • DC & AC generators & loads I/R/C: Isolation / Resistance / Continuity test – finds unintended short or open circuits prior to first power -on

  29. Test Plan Ethernet switch integrated into EIP for WB/ER-2 Will need larger AC load (20kW) Will use 100A in-house TRU, not Champion Unit Need larger AC source; may have to go 60Hz

  30. Test Plan • Vibration – • Qualification Test per DRB 367-1100-121 (TBD) • 7.17grms, 3-axis,1 hour per axis • Fixture modification needed (new bolt pattern) • Thermal Altitude • Worst-case thermal & altitude combinations for pressurized and unpressurized areas • -55C -> 0C @ 70kft • 0C -> 45C @ 30kft • 0C -> 60C (TBD) @ sea level

  31. Test Plan May need to request waiver for infrastructure power cold start (TBD) Considering changing profile & dwell times to match DO-160F approach

  32. Schedule / Milestones • May 2010 – Materials funding issued • September 2010 – PDR • December 2010 – NASDAT Pre-Production • February 2011 – EIP Pre-Production • April 2011 – EIP & NASDAT Production • American Recovery and Reinvestment Act (ARRA) funds expire in June 2011

  33. Conclusion / Actions • The NASDAT, EIP, and associated hardware are ready for detailed design. • Review and record any actions flagged during the presentation.

  34. Payload Control System (NASDAT, EIP) ER-2 and WB-57 Implementation NASA ASF, 9/14/2010

  35. Acronym List • Ω - Ohms • Ф – Phase • 1G – Gigabit Ethernet • A - Amperes • AC – Alternating Current • AIA – Aerospace Industries Association • ASF – Airborne Sensor Facility • ATR – Air Transport Rack • C – Celsius / Centigrade • CAT6 – Category 6 • CPU – Central Processing Unit • DC – Direct Current • EIP – Experimenter Interface Panel • GLOPAC – Global Hawk Pacific • GRIP – Genesis and Rapid Intensification Processes • HQ - Headquarters • Hz – Hertz • IP – Internet Protocol • IRIG – Inter-range Instrumentation Group • IRIG-B – IRIG Code B • I/R/C – Isolation , Resistance, Continuity • k – Kilo (thousand) • kHz - Kilohertz • ms - Millisecond • NASDAT - NASA Airborne Science Data Acquisition and Transmission unit • PDR – Preliminary Design Review • RSTP – Rapid Scanning Tree Protocol • S/C – Signal Conditioning • SAE – Society of Automotive Engineers • SSPC – Solid State Power Controller • SSR – Solid State Relay • TBD – To Be Determined • TCP – Transmission Control Protocol • TIA – Telecommunications Industry Association • uC – Microcontroller • UDP – User Datagram Protocol • uP – Microprocessor • VAC – Volts, AC • VDC – Volts, DC • V – Volts • W - Watts

More Related