200 likes | 313 Views
The computational complexity of entanglement detection. Mark M. Wilde Louisiana State University. Based on 1211.6120 and 1308.5788 With Gus Gutoski , Patrick Hayden, and Kevin Milner. How hard is entanglement detection?.
E N D
The computational complexity of entanglement detection Mark M. Wilde Louisiana State University Based on 1211.6120and 1308.5788 With Gus Gutoski, Patrick Hayden, and Kevin Milner
How hard is entanglement detection? • Given a matrix describing a bipartite state, is the state separable or entangled? • NP-hard for d x d, promise gap 1/poly(d) [Gurvits’04 + Gharibian ‘10] • Quasipolynomial time for constant gap [Brandao et al. ’10] • Probably not the right question for large systems. • Given a description of a physical process for preparing a quantum state (i.e. quantum circuit), is the state separable or entangled? • Variants: • Pure versus mixed • State versus channel • Product versus separable • Choice of distance measure (equivalently, nature of promise)
Entanglement detection: The platonic ideal NO α α YES β
Some complexity classes… P / BPP / BQP P / BPP / BQP = QIP(0) NP / MA / QMA NP / MA / QMA = QIP(1) AM / QIP(2) Cryptographic variant: Zero-knowledge Verifier, in YES instances, can “simulate” prover ZK / SZK / QSZK = QSZK(2) QMA(2) QIP = QIP(3) QIP = QIP(3) = PSPACE [Jain et al. ‘09]
Pure state circuit Product output? Trace distance BQP-complete Mixed state circuit Product output? Trace distance QSZK-complete Results: States Mixed state circuit Separable output? 1-LOCC distance (1/poly) NP-hard QSZK-hard In QIP(2)
Isometric channel Separable output? 1-LOCC distance QMA-complete Isometric channel Separable output? Trace distance QMA(2)-complete Results: Channels Noisy channel Separable output? 1-LOCC distance QIP-complete
Pure state circuit Product output? Trace distance BQP-complete Mixed state circuit Product output? Trace distance QSZK-complete Results: States Mixed state circuit Separable output? 1-LOCC distance NP-hard QSZK-hard In QIP(2)
Zero-knowledge (YES instances):Verifier can simulate prover output
Pure state circuit Product output? Trace distance BQP-complete Mixed state circuit Product output? Trace distance QSZK-complete Results: States Mixed state circuit Separable output? 1-LOCC distance NP-hard QSZK-hard In QIP(2)
Detecting mixed separable states ρAB close to separable iff it has a suitable k-extension for sufficiently large k. [BCY ‘10] Send R to the prover, who will try to produce the k-extension. Use phase estimation to verify that the resulting state is a k-extension.
Summary • Entanglement detection provides a unifying paradigm for parametrizing quantum complexity classes • Tunable knobs: • State versus channel • Pure versus mixed • Trace norm versus 1-LOCC norm • Product versus separable