230 likes | 345 Views
Chapter 8 continued. Mealy FSMs. FSM Model Variants. Moore-type Outputs depend only on Present State Mealy-type Outputs depend on Present State AND Inputs. Specify Desired Circuit. One input w One output z All changes occur on positive edge of clock Output z = 1 if
E N D
Chapter 8 continued Mealy FSMs
FSM Model Variants • Moore-type • Outputs depend only on Present State • Mealy-type • Outputs depend on Present State AND Inputs
Specify Desired Circuit • One input w • One output z • All changes occur on positive edge of clock • Output z = 1 if • During immediately preceding clock cycle the input w was equal to 1 AND is currently equal to 1 • Output z = 0 otherwise Clockcycle: t t t t t t t t t t t 0 1 2 3 4 5 6 7 8 9 10 w : 0 1 0 1 1 0 1 1 1 0 1 z : 0 0 0 0 1 0 0 1 1 0 0
New Machine Clockcycle: t t t t t t t t t t t 0 1 2 3 4 5 6 7 8 9 10 w : 0 1 0 1 1 0 1 1 1 0 1 z : 0 0 0 0 1 0 0 1 1 0 0 Old Machine Clockcycle: t t t t t t t t t t t 0 1 2 3 4 5 6 7 8 9 10 w : 0 1 0 1 1 0 1 1 1 0 1 z : 0 0 0 0 0 1 0 0 1 1 0
Clockcycle: t t t t t t t t t t t 0 1 2 3 4 5 6 7 8 9 10 w : 0 1 0 1 1 0 1 1 1 0 1 z : 0 0 0 0 1 0 0 1 1 0 0 A A clk w z Reset ¤ w = 0 z = 0 A
Clockcycle: t t t t t t t t t t t 0 1 2 3 4 5 6 7 8 9 10 w : 0 1 0 1 1 0 1 1 1 0 1 z : 0 0 0 0 1 0 0 1 1 0 0 A A B clk w z Reset ¤ w = 1 z = 0 ¤ w = 0 z = 0 A B
Clockcycle: t t t t t t t t t t t 0 1 2 3 4 5 6 7 8 9 10 w : 0 1 0 1 1 0 1 1 1 0 1 z : 0 0 0 0 1 0 0 1 1 0 0 A A B A clk w z Reset ¤ w = 1 z = 0 ¤ w = 0 z = 0 A B ¤ w = 0 z = 0
Clockcycle: t t t t t t t t t t t 0 1 2 3 4 5 6 7 8 9 10 w : 0 1 0 1 1 0 1 1 1 0 1 z : 0 0 0 0 1 0 0 1 1 0 0 A A B A B clk w z Reset ¤ w = 1 z = 0 ¤ ¤ w = 0 z = 0 w = 1 z = 1 A B ¤ w = 0 z = 0
Clockcycle: t t t t t t t t t t t 0 1 2 3 4 5 6 7 8 9 10 w : 0 1 0 1 1 0 1 1 1 0 1 z : 0 0 0 0 1 0 0 1 1 0 0 A A B A B B clk w z Reset ¤ w = 1 z = 0 ¤ ¤ w = 0 z = 0 w = 1 z = 1 A B ¤ w = 0 z = 0
Clockcycle: t t t t t t t t t t t 0 1 2 3 4 5 6 7 8 9 10 w : 0 1 0 1 1 0 1 1 1 0 1 z : 0 0 0 0 1 0 0 1 1 0 0 A A B A B B A clk w z Reset ¤ w = 1 z = 0 ¤ ¤ w = 0 z = 0 w = 1 z = 1 A B ¤ w = 0 z = 0
Clockcycle: t t t t t t t t t t t 0 1 2 3 4 5 6 7 8 9 10 w : 0 1 0 1 1 0 1 1 1 0 1 z : 0 0 0 0 1 0 0 1 1 0 0 A A B A B B A B clk w z Reset ¤ w = 1 z = 0 ¤ ¤ w = 0 z = 0 w = 1 z = 1 A B ¤ w = 0 z = 0
Clockcycle: t t t t t t t t t t t 0 1 2 3 4 5 6 7 8 9 10 w : 0 1 0 1 1 0 1 1 1 0 1 z : 0 0 0 0 1 0 0 1 1 0 0 A A B A B B A B B clk w z Reset ¤ w = 1 z = 0 ¤ ¤ w = 0 z = 0 w = 1 z = 1 A B ¤ w = 0 z = 0
Clockcycle: t t t t t t t t t t t 0 1 2 3 4 5 6 7 8 9 10 w : 0 1 0 1 1 0 1 1 1 0 1 z : 0 0 0 0 1 0 0 1 1 0 0 A A B A B B A B B B clk w z Reset ¤ w = 1 z = 0 ¤ ¤ w = 0 z = 0 w = 1 z = 1 A B ¤ w = 0 z = 0
Clockcycle: t t t t t t t t t t t 0 1 2 3 4 5 6 7 8 9 10 w : 0 1 0 1 1 0 1 1 1 0 1 z : 0 0 0 0 1 0 0 1 1 0 0 A A B A B B A B B B A clk w z Reset ¤ w = 1 z = 0 ¤ ¤ w = 0 z = 0 w = 1 z = 1 A B ¤ w = 0 z = 0 During present clock cycle output value on arc from Present State node Note difference from Moore model in where output is shown output changes asynchronously
z Next state Output Present state w = 0 w = 1 w = 0 w = 1 A A B 0 0 B A B 0 1 State Table & State Assignment Next state Output Present state w = 0 w = 1 w = 0 w = 1 y Y Y z z A 0 0 1 0 0 B 1 0 1 0 1
Derivation of Next-state and Output Expressions Next state Output Present state w = 0 w = 1 w = 0 w = 1 y Y Y z z A 0 0 1 0 0 B 1 0 1 0 1 Y Truth Table y w Y 0 0 0 0 1 1 1 0 0 1 1 1 z Truth Table y w z 0 0 0 0 1 0 1 0 0 1 1 1 Y = w z = y.w
Asynchronous Behavior of Mealy Model • If z is connected to another synchronous clock no problem • If z is connected to another circuit not controlled by the same clock a potential problem exists
Next State Present Output How many states? Create Present State/Next State/Output table state z
Next State Present Output state w = 0 w = 1 z y y 2 1 Y Y Y Y 2 1 2 1 0 0 0 0 01 0 0 1 0 0 10 0 1 0 0 0 11 0 1 1 0 0 11 1
Counter Using Sequential State Machine • Counting Sequence is 0,1,2,…,6,7,0,1,… • Input w • If w = 0 present count remains the same • If w = 1 count is incremented • Create State Diagram • Create State Table • Create State Assignments
FSM with Two Inputs • Inputs w1 and w2 • Outputs z • If w1 = w2 during any four consecutive clock cycles z = 1 • Otherwise z = 0 w1 0 1 1 0 1 1 1 0 0 0 1 1 0 w2 1 1 1 0 1 0 1 0 0 0 1 1 1 z 0 0 0 0 1 0 0 0 0 1 1 1 0
Homework • Brown 8.3 & 8.5 • Create • State Diagram • State Table • State Assignment Table