100 likes | 248 Views
igraph Παραδείγματα. Τα δεδομένα judicial http://cneurocvs.rmki.kfki.hu/igraph/judicial.csv. caseid usid parties year overruled overruling oxford liihc indeg
E N D
Τα δεδομένα judicialhttp://cneurocvs.rmki.kfki.hu/igraph/judicial.csv caseidusid parties year overruled overruling oxford liihcindeg 1 1 1US1 1754 0 0 0 0 0 2 2 1US2 1759 0 0 0 0 0 3 3 1US3 1760 0 0 0 0 0 ………………………………………………………………………………………………………………………………………………………………………………………………………………………………….. ………………………………………………………………………………………………………………………………………………………………………………………………………………………………….. 30286 30286 534US506 Swierkiewicz v. Sorema N.A. 2002 0 0 0 0 0 30287 30287 534US516 Porter v. Nussle 2002 0 0 0 0 0 30288 30288 534US533 Raygor v. Regents of the Univ. of Minn. 2002 0 0 0 0 0 outdeg hub hubrankauthauthrank between incent 1 0 0.00000000 20250 0 20945 0 0 2 0 0.00000000 20250 0 20945 0 0 3 0 0.00000000 20250 0 20945 0 0 ………………………………………………………………………………………………………………………………………………………………………………………………………………………………….. ………………………………………………………………………………………………………………………………………………………………………………………………………………………………….. 30286 10 0.00116609 5475 0 20945 0 0 30287 12 0.00124623 5289 0 20945 0 0 30288 19 0.00159863 4604 0 20945 0 0
Οι συνδέσεις (edges)http://cneurocvs.rmki.kfki.hu/igraph/allcites.txt > head(edges) V1 V2 1 388 332 2 388 386 3 511 153 4 511 28 5 511 300 6 892 479 > tail(edges) V1 V2 216733 30288 29308 216734 30288 29317 216735 30288 30024 216736 30288 30109 216737 30288 30115 216738 30288 30159 > Είναι 30288 κορυφές από το αρχείο judicial.csv που συνδέονται με 216738 ακμές από το αρχείο allcites.txt
Κατανομήέξω βαθμών plot(degree.distribution (jg, mode="out"), log="xy")
scale-free networkBarabasi g <- barabasi.game(100, m=1) g <- simplify(g) ## simple plot igraph.par("plot.layout", layout.fruchterman.reingold) plot(g, vertex.size=3, vertex.label=NA, edge.arrow.size=0.6)
Έξω-βαθμοίανά έτος deg.per.year <- tapply(degree(jg, mode="out"), V(jg)$year, mean) plot( names(deg.per.year), deg.per.year )
Τυχαίο γράφημα (Erdos) g <- erdos.renyi.game(100, 1/100) V(g)$color <- sample( c("red", "black"), vcount(g), rep=TRUE) E(g)$color <- "grey" red <- V(g)[ color == "red" ] bl <- V(g)[ color == "black" ] E(g)[ red %--% red ]$color <- "red" E(g)[ bl %--% bl ]$color <- "black" plot(g, vertex.size=5, layout= layout.fruchterman.reingold)
Εμφάνιση V(g)$label <- paste(sep="\n", V(g)$name, degree(g)) ## And plot again plot(g, asp=FALSE, vertex.label.color="blue", vertex.label.cex=1.5, vertex.label.font=2, vertex.size=20, vertex.color="white", vertex.frame.color="white", edge.color="black")