330 likes | 453 Views
From the effective theory. Imaginary Chemical potential and Determination of QCD phase diagram. M. Yahiro (Kyushu Univ.). Collaborators: H. Kouno (Saga Univ.), K. Kashiwa, Y. Sakai(Kyushu Univ.). 2009/08/3 XQCD 2 009. Our papers on imaginary chemical potential. 2008-2009
E N D
From the effective theory Imaginary Chemical potential and Determination of QCD phase diagram M. Yahiro (Kyushu Univ.) Collaborators: H. Kouno (Saga Univ.), K. Kashiwa, Y. Sakai(Kyushu Univ.) 2009/08/3 XQCD 2009
Our papers on imaginary chemical potential 2008-2009 • Polyakov loop extended NJL model with imaginary chemical potential,Phys. Rev. D77 (2008), 051901. • Phase diagram in the imaginary chemical potential region and extended Z(3) symmetry,Phys. Rev. D78(2008), 036001. • Vector-type four-quark interaction and its impact on QCD phase structure, Phys. Rev. D78(2008), 076007. • Meson mass at real and imaginary chemical potential, Phys. Rev. D 79, 076008 (2009). • Determination of QCD phase diagram from imaginary chemical potential region, Phys. Rev. D 79, 096001 (2009). • Correlations among discontinuities in QCD phase diagram, J. Phys. G to be published.
Prediction of QCD phase diagram First-principle lattice calculation is difficult at finite real chemical potential, because of sign problem. Where is it ? Lattice calculation is done with some approximation. Sign problem Where is the critical end point?
Imaginary chemical potential T ? • Motivation Lattice QCD has no sigh problem. • Lattice data P. de Forcrand and O. Philipsen, Nucl. Phys. B642, 290 (2002); P. de Forcrand and O. Philipsen, Nucl. Phys. B673, 170 (2003). M. D’Elia and M. P. Lombardo, Phys. Rev. D 67, 014505(2003); Phys. Rev. D 70, 074509 (2004); M. D’Elia, F. D. Renzo, and M. P. Lombardo, Phys. Rev. D 76, 114509(2007); H. S. Chen and X. Q. Luo, Phys. Rev. D72, 034504 (2005); arXiv:hep-lat/0702025 (2007). S. Kratochvila and P. de Forcrand, Phys. Rev. D 73, 114512 (2006) L. K. Wu, X. Q. Luo, and H. S. Chen, Phys. Rev. D76, 034505(2007). O.K. 0 μ2 effective model Real μ Imaginary μ
Roberge-Weiss periodicity Nucl. Phys. B275(1986) Dimensionless imaginary chemical potential: Temperature: QCD partition function
Z3 transformation where is an element of SU(3) with the boundary condition for any integer
RW periodicity and extended Z3 transformation under Z3 transformation. for integer Roberge-Weiss Periodicity Invariant under the extended Z3 transformation
QCD has the extended Z3 symmetry in addition to the chiral symmetry This is important to construct an effective model. The Polyakov-extended Nambu-Jona-Lasinio (PNJL) model Fukushima; PLB591
Polyakov-loop Nambu-Jona-Lasinio (PNJL)model Two-flavor Fukushima; PLB591 gluon potential quark part (Nambu-Jona-Lasinio type) It reproduces the lattice data in the pure gauge limit. , Ratti, Weise; PRD75
Mean-field Lagrangian in Euclidean space-time for Performing the path integration of the PNJL partition function the thermodynamic potential
Thermodynamic potential (1) where invariant under the extended Z3 transformation
Thermodynamic potential (2) Polyakov-loop is not invariant under the extended Z3 transformation; Modified Polyakov-loop Thermodynamic potential Extended Z3 invariant RWperiodicity:
Θ-evenness Stationary condition Invariant under charge conjugation Θ-even
Model parameters Gs This model reproduces the lattice data at μ=0. , Ratti, Weise; PRD75
Thermodynamic Potential low T=Tc high T=1.1Tc Kratochvila, Forcrand; PRD73 low T RW transition high T
Polyakov-loop susceptibility PNJL Lattice data: Wu, Luo, Chen, PRD76(07).
Phase of Polyakov loop PNJL Lattice data: Forcrand, Philipsen, NP B642(02), Wu, Luo, Chen, PRD76(07)
Phase diagram for deconfinement phase trans. Lattice data: Wu, Luo, Chen, PRD76(07) PNJL RW RW periodicity
Chiral condensate and quark number density Quark Number Chiral Condensate Θ-odd Θ-even Low T High T Lattice D’Elia, Lombardo(03)
Phase diagram for chiral phase transition PNJL RWline Chiral Deconfinement Forcrand,Philipsen,NP B642 Chiral Deconfinement Θ-even higher-order interaction
Zero chemical potential PNJL Lattice data: Karsch et al. (02)
Higher order correction 8-quark PNJL + Θ-even in next-to-leading order + Power counting rule based on mass dimension Lattice Karsch, et. al.(02)
Θ-even in next-to-leading order PNJL 8-quark + RW Chiral Forcrand,Philipsen, NP B642 Deconfinement
Another correction 8-quark (Θ-even) PNJL + RW difference Chiral Forcrand,PhilipsenNPB642 Deconfinement
Vector-type interaction 8-quark (Θ-even) Vector-type (Θ-odd) PNJL + + RW Chiral Forcrand,PhilipsenNPB642 Deconfinement
Phase diagram at real μ 8-quark Vector-type PNJL + + RW Lattice de-confined Chiral Deconfinement CEP CEP confined 1’ st order
Critical End Point StephanovLattice2006 Lattice Taylor Exp.(LTE) Reweighting(LR) Model Our result (784, 125)
Meson mass Mesonic correlation function Random phase approximation (Ring diagram approximation) One-loop polarization function H. Hansen, W. M. Alberico, A. Beraudo, A. Molinari, M. Nardi and C. Ratti, Phys. Rev. D 75 (2007) 065004. K. Kashiwa,M. Matsuzaki, H. Kouno, Y. Sakai and M. Yahiro1, Phys. Rev. D 79, 076008 (2009).
Meson mass with RW periodicity T=160 MeV oscillation
Extrapolation T=160 MeV PNJL
Conclusion • QCD has a higher symmetry at imaginary μ, called the extended Z3 symmetry. • PNJL has this property. • PNJL well reproduces lattice data at imaginary μ. • PNJL predicts that the CEP survives, even if the vector interaction is taken into account. • Meson mass also has RW periodicity at imaginary μ.
Higher order correction Θ-even in next-to-leading order PNJL 8-quark + + Mean field approx. 1/N expansion Kashiwa et al. PLB647(07),446; PLB662(08),26. Lattice Karsch, et. al.(02)