410 likes | 1.49k Views
Anesthésiques halogénés . Halogenated anaesthetic agents. Anesthésiques halogénés (1) . agents par inhalation = protoxyde d'azote (N2O), le xénon, les agents halogénés.
E N D
Anesthésiques halogénés Halogenated anaesthetic agents Dr Ph Gomis
Anesthésiques halogénés (1) • agents par inhalation = protoxyde d'azote (N2O), le xénon, les agents halogénés. • agents halogénés = hydrocarbures dont certaines parties de la molécule sont substituées à des degrés divers par un atome halogène (brome, chlore et fluor), d'où leur nom. • La nature, le nombre et la position de cet halogène conditionnent les propriétés pharmacocinétiques, les effets et la toxicité de ces agents. • caractérisés par un index thérapeutique élevé lié à une faible toxicité. Dr Ph Gomis
Anesthésiques halogénés (2) • possibilité de mesurer en continu leurs concentrations alvéolaires • leur injection directe dans certains circuits d'anesthésie permet dorénavant d'effectuer une anesthésie par inhalation à objectif de concentration mesurée (et non calculée comme cela est le cas pour les agents intraveineux). • élimination rapide par voie respiratoire et la faible solubilité des agents les plus récents permettent une adaptation rapide du niveau d'anesthésie lors de l'entretien, ainsi qu'un réveil rapide et prédictible quelles que soient la durée d'anesthésie et les caractéristiques du patient. Dr Ph Gomis
ANESTHESIE PAR INHALATION physique-chimie • gaz : désigne une substance qui, à température et pression ambiantes habituelles, n'existe qu'à l'état gazeux. • vapeur : désigne l'état gazeux d'une substance qui, à température et pression ambiantes habituelles, existe à état liquide. C'est l'ensemble des molécules d'une substance présentes au-dessus de la phase liquide de cette même substance (vaporisation). • gaz et vapeurs se comportent dans l'organisme comme des gaz et suivent leurs lois. Dr Ph Gomis
Structure chimique des agents halogénés. A. Halothane. B. Enflurane. C. Isoflurane. D. Sévoflurane. E. Desflurane Dr Ph Gomis
Xenon MAC = 0.63 Dr Ph Gomis
Historique (pour info) • l'éther en 1846 par Morton • chloroforme (1847) • méthoxyflurane (1962) • L'halothane (1950) • L'enflurane (1973) • L'isoflurane (1984) • desflurane depuis 1990 • et le sévoflurane depuis 1996 Dr Ph Gomis
Théorie cinétique des gaz et notion de pression • Gaz : système thermodynamique échangeur d'énergie avec l'environnement. • Agitation thermique : mouvement désordonné des molécules (énergie cinétique moyenne des molécules est proportionnelle à la température). • Pression : collision des molécules entre elles et les parois du contenant • Plus il y a de molécules, plus il y a de chocs et plus la pression s'élève. • Plus un gaz reçoit de chaleur, plus son énergie interne s'élève et plus la vélocité de ses molécules et le nombre de chocs augmentent. Dr Ph Gomis
Transformation liquide-gaz • La vaporisation est le passage de l'état liquide à l'état gazeux ( c.a.d de vapeur ). Evaporation (surface). Ebullition (bulle). • pression de vapeur : un liquide échange des particules avec son environnement gazeux. Des molécules de surface, moins liées à l'ensemble, s'échappent vers la phase gazeuse du fait de l'agitation thermique ; elles se heurtent aux parois du récipient. • pression de vapeur saturante : Définition : pression partielle du gaz à l’équilibre avec la phase liquide à une température donnée. Lors de l'évaporation, les molécules de liquide quittent sa surface jusqu'à ce que la pression partielle de vapeur dans l'atmosphère qui surmonte le liquide atteigne une valeur maximale. Cette valeur maximale est spécifique du liquide considéré. • point d’ébullition : Définition : température à laquelle la pression de vapeur saturante est égale à la pression ambiante (760mmHg). Supérieur à 40°C pour isoflurane et sevoflurane, proche de la température ambiante pour desflurane ( vaporisateur spécial de régulation de la température et de la pression : pressurisé et thermostaté). • Conséquences : vaporisateur spécifique par halogéné. sous forme liquide dans un flacon avec détrompeur. Dr Ph Gomis
Ces principes sont utilisés en anesthésie • vaporisation par "léchage" où un courant gazeux emporte les molécules issues du liquide, • vaporisation par "barbotage" où le passage d'un débit de gaz à travers un liquide volatil en arrache des molécules qui se répartissent à l'intérieur des bulles. • Ex : la pression de vapeur saturante de l'halothane étant de 241 mmHg à 20°C et 760 mmHg, la concentration maximale que l'on peut atteindre par évaporation est de : (241/760) x 100 = 31.7 vol. %. Dr Ph Gomis
Mélange de gaz et pression partielleLoi de Dalton • Dans un mélange gazeux, chaque gaz exerce la pression ( = pression partielle ) qu'il exercerait s'il était seul à occuper le volume total. • La pression exercée par un mélange de gaz dépend du nombre total de molécules et non pas de leur appartenance à un gaz donné. • Chaque gaz exerce une pression partielle en rapport avec le nombre de ses molécules. • La pression d'un mélange de gaz est égale à la somme des pressions partielles de chaque gaz. P = F x Pb • Ex : Si la concentration de l'oxygène dans l'air est de 21 %, sa pression partielle est : • Po2 = 0.21 x 760 = 159 mmHg. Dr Ph Gomis
Solubilité des gaz et vapeursLoi de Henry • FONDAMENTAL • L'effet des agents très solubles est plus lent à apparaître que celui des agents moins solubles. • La loi de Henry : • le volume de gaz (V) dissous dans un liquide est directement proportionnel à la pression partielle du gaz a la surface du liquide (P). La constante de proportionnalité (k) ou coefficient de solubilité, est spécifique d'un gaz, d'un liquide, et d'une température donnés • V = k * P Dr Ph Gomis
Le coefficient de solubilité • Le coefficient de Bunsen (a) • Le coefficient d'Ostwald () • Le coefficient de partage • c'est le rapport du nombre de molécules d'un gaz dans une phase sur le nombre de molécules de gaz dans une autre phase, quand l'équilibre entre les deux phases est atteint. • Ex : Soit une enceinte renfermant moitié sang et moitié air, dans laquelle on introduit un agent anesthésique volatil. Si après équilibration, 40 % du gaz se trouve dans la phase sanguine et 60 % dans la phase gazeuse, alors le coefficient de partage de cet anesthésique est égal à 4/6 ou 0.66. Dr Ph Gomis
Coefficients de partage Dr Ph Gomis
Conclusions : De façon générale, un bon anesthésique doit avoir des coefficients de solubilité sang/gaz et huile/eau peu élevés. (cf. chap. pharmacocinétique ). Halothane Enflurane Isoflurane Sevoflurane Desflurane N20 Xenon Pression de vapeur 241 175 240 160 644 39.103 saturante à 20°C Température 50.2 56.5 48.5 58.5 23.5 -88.5 d ’ébullition (°C) Coefficient de 2.5 1.8 1.4 0.69 0.42 0.47 0.115 partage sang/gaz Stabilité dans STABLE STABLE STABLE INSTABLE STABLE STABLE la chaux sodée MAC en O² pur (%) 0.75 2.0 1.15 2.0 6.5 104 63 MAC avec 60-70% 0.29 0.6 0.5 0.66 4.0 - - de N2O (%) Dr Ph Gomis
Pharmacocinétique Distribution tissulaire : toutes les étapes de transfert du gaz à partir du mélange inspiré jusqu'au cerveau Dr Ph Gomis
CONCENTRATION ALVEOLAIRE MINIMALE • L'intensité de l'effet d'un anesthésique est proportionnelle à sa concentration cérébrale (difficile à mesurer). • La pression partielle alvéolaire anesthésique est utilisée comme index de mesure de l'intensité de l'effet anesthésique. • elle est égale a la pression partielle cérébrale d'anesthésique en toutes circonstances sauf lors de l'induction de l'anesthésie (cf figure suivante) • La concentration alvéolaire minimale ou MAC, est celle qui provoque l'absence de réponse à un stimulus nociceptif (incision chirurgicale) chez 50 % des patients. Dr Ph Gomis
Évolution des fractions inspirées (Fi), expirées (Fe) et de la concentration cérébrale (Ce) du sévoflurane. La fraction télé-expiratoire monitorée n'est le reflet de la concentration cérébrale de l'halogéné qu'à l'équilibre (simulation avec le logiciel Gas Man®). FGF : débit de gaz frais ; DEL : fraction délivrée d'halogénés ; CKT : circuit d'anesthésie ; ALV : alvéole ; VRG : vessel rich group (tissus richement vascularisés) ; MUS : compartiment musculaire ; FAT : compartiment graisseux ; atm : atmosphère. Ref : Roullet, Biais, Sztark, EMC 36-100-E-10 Dr Ph Gomis
CONCENTRATION ALVEOLAIRE MINIMALE • Le protoxyde d'azote a des effets additifs à ceux des halogénés. • La MAC du protoxyde d'azote (mesurée en hyperbarie) est équivalente à 104 %. Une demi-MAC de N2O est équivalente à 60 %. En présence de 60 % de N2O, la MAC des anesthésiques volatils halogénés est réduite de moitié. • En pratique anesthésique, les concentrations utiles sont environ 1,5 fois supérieures puisque à 1 MAC seulement 50 % des patients sont anesthésiés alors que 95 % le sont à 1,3 MAC. En présence de 60 % de protoxyde d'azote, les concentrations alvéolaires utiles sont réduites de moitié • - MAC / age • - MAC / température Dr Ph Gomis
EVOLUTION DE LA CONCENTRATION ALVEOLAIRE ( Induction et entretien de l'anesthésie ) • Les différents facteurs susceptibles d'influencer la concentration alvéolaire des anesthésiques par inhalation influencent le niveau de l'anesthésie. • Entrée<--->sortie • 2 facteurs influencent l'apport alvéolaire. • la concentration inspirée • la ventilation alvéolaire. • 3 facteurs influencent la fuite alvéolaire. • la solubilité dans le sang • le débit cardiaque • le gradient de pression partielle alvéolo-veineux. Dr Ph Gomis
Effet de la solubilité dans le sang • Plus la solubilité de l'anesthésique dans le sang est élevée et plus son captage de l'alvéole vers le sang sera important • Trois phases sont distinguées dans l'évolution de la concentration alvéolaire . • une phase de montée rapide correspondant au lavage du poumon où la concentration montre rapidement • diffusion vers les tissus richement vascularisés • dernière phase linéaire de montée lente correspond au captage par les autres tissus Dr Ph Gomis
Fig. 1. Évolution du rapport concentration alvéolaire (FA) sur la concentration inspirée (FI) lors de l'induction anesthésique Dr Ph Gomis
Influence du débit cardiaque • L'élévation du débit cardiaque accroît la fuite de l'anesthésique de l'alvéole vers les tissus et freine l'élévation de la concentration alvéolaire. Dr Ph Gomis
Influence de la différence alvéolo-veineuse • Le gradient alvéolo-veineux reflète la captation tissulaire de l'anesthésique. La vitesse du transfert du gaz de l'alvéole vers le sang est également fonction du gradient de pression entre ces 2 phases. Dr Ph Gomis
Effet de la concentration du mélange inspiré • Plus la concentration est élevée en valeur absolue dans l'air inspiré, et plus vite s'élève la concentration alvéolaire. • Effet concentration, effet premier gaz, effet deuxième gaz, effet Fink : • pour le protoxyde d'azote : "effet concentration" ou "effet premier gaz" • pour un agent halogéné associé : "effet deuxième gaz" • pour l'oxygène : "hyperoxie de diffusion " et "hypoxie de diffusion (effet Fink) " Dr Ph Gomis
Influence de la ventilation alvéolaire • L'hyperventilation élève rapidement la concentration alvéolaire et accélère l'induction, ou accélère l'élimination des gaz au réveil. • L ’hyperventilation • l ’hypoventilation • la ventilation spontanée • l ’hyperventilation manuelle ou instrumentale Dr Ph Gomis
EVOLUTION DE LA CONCENTRATION ALVEOLAIRE AU REVEIL • La séquence des événements est la même, en sens inverse de celle survenant lors de l'induction. • Le débit de gaz sortant correspond à la ventilation alvéolaire et le débit entrant à la quantité délivrée par les tissus. • L'évolution de la fraction alvéolaire FA se définit alors par rapport à celle existant au moment où l'on interrompt l'inhalation de l'anesthésique gazeux (FAo). • Surtout, la vitesse du réveil dépend de la durée antérieure de l'anesthésie ; plus l'anesthésie est longue, et plus les territoires périphériques, notamment la graisse, se seront saturés, plus le relargage à partir de ces territoires sera long et le réveil sera retardé. Dr Ph Gomis
réveil : évolution de la concentration alvéolaire (FA) des agents anesthésiques par inhalation par rapport à la concentration présente à l'arrêt de leur administration (FAO). Dr Ph Gomis
Influence de la concentration alvéolaire (CAM) des agents halogénés et de leur durée d'administration sur le délai de réveil. Les agents les moins solubles ont un délai de réveil indépendant de la concentration alvéolaire d'entretien. Dr Ph Gomis
Facteurs influençants la MAC Factors increasing MAC Hyperthermia Hyperthyroidism CNS stimulants Factors decreasing MAC Increasing age Hypothermia Hyponatremia Hypotension (< 40mmHg) Pregnancy Hypoxemia (< 38 mmHg) Anemia (< 4.3 ml/ dl) Narcotics Ketamine Benzodiazepines á 2 agonists LiCO 3 Local anesthetics ETOH (acute) Factors with no influence on MAC Duration of anesthesia Sex Acid- base balance PCO 2 Hypertension Anemia Potassium Dr Ph Gomis
Concentration alvéolaire minimale des halogénés (pour info) • Adulte + 60 % protoxyde d'azote Nouveau-né 0 mois - 1 an Enfant Sujets âgés • Halothane 0,75 % 0,29 % 1 % 0,9 % 0,64 % • Enflurane 1,68 % 0,6 % / 2-2,5 %b 1,55 % • Isoflurane 1,15 % 0,5 % 1,6 1,87 1,6 % 1, 05 % • Sévoflurane 2,05 % 1 % 3 % 3 % 2,6 % 1,45 % • Desflurane 6 % (7,25 %a) 2,83 % (4 %a) 9,16 % 10 % 8 % 5,17 % • Protoxyde d'azote 104 % • a de 18 à 3 ans.b âge > 3 ans. Dr Ph Gomis
MAC Sevoflurane (pour info) Dr Ph Gomis