1 / 17

Chapter 6 二叉树模型介绍

Chapter 6 二叉树模型介绍. 一个简单的二叉树模型. 股票的现价为 $20 三个月之后股票的价格或为 $22 或为 $18. Stock Price = $22. Stock price = $20. Stock Price = $18. 一份看涨期权. 一份基于该股票的三个月到期的看涨期权,其执行价格为 $ 21. Stock Price = $22 Option Price = $1. Stock price = $20 Option Price=?. Stock Price = $18 Option Price = $0.

nelle-olson
Download Presentation

Chapter 6 二叉树模型介绍

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chapter 6二叉树模型介绍

  2. 一个简单的二叉树模型 • 股票的现价为 $20 • 三个月之后股票的价格或为 $22 或为 $18 Stock Price = $22 Stock price = $20 Stock Price = $18

  3. 一份看涨期权 一份基于该股票的三个月到期的看涨期权,其执行价格为$ 21. Stock Price = $22 Option Price = $1 Stock price = $20 Option Price=? Stock Price = $18 Option Price = $0

  4. 22D – 1 18D 构造无风险资产组合 • 考虑一个资产组合: 持有 D份股票 成为一份看涨期权的空头 • 当 22D – 1 = 18D or D = 0.25,资产组合是无风险的

  5. 资产组合的估值( 无风险利率为 12% ) • 无风险组合为: 持有 0.25份股票 成为一份看涨期权的空头 • 三个月后组合的价值为 22´0.25 – 1 = 4.50 • 组合在时刻0的价值为 4.5e – 0.12´0.25 = 4.3670

  6. 期权的估值 • 资产组合为 持有 0.25份股票 成为一份看涨期权的空头 组合在时刻0的价值为4.3670 • 股票的价值是 5.000 (= 0.25×20 ) • 从而,期权的价格为 • 0.633 (= 5.000 – 4.367 )

  7. Su ƒu S ƒ Sd ƒd 推广到一般情形 • 一个依赖于股票的衍生证券,到期时间为 T

  8. 推广到一般情形(continued) • 考虑一个组合:持有D份股票,成为一份衍生证券的空头 • 当 D满足下面的条件时,组合为无风险: SuD – ƒu = SdD – ƒd or SuD – ƒu SdD – ƒd

  9. 推广到一般情形(continued) • 组合在时刻 T的价值为 SuD – ƒu • 组合在时刻0的价值为 (SuD – ƒu )e–rT • 组合在时刻0的价值又可以表达为 SD – f • 从而 ƒ = SD – (SuD – ƒu)e–rT

  10. 推广到一般情形(continued) • 于是,我们得到 ƒ = [ p ƒu + (1 – p )ƒd ]e–rT 其中

  11. Su ƒu S ƒ Sd ƒd Risk-Neutral Valuation • ƒ = [ p ƒu + (1 – p )ƒd ]e-rT • 变量 p和(1– p ) 可以解释为股票价格上升和下降的风险中性概率 • 衍生证券的价值就是它的到期时刻的期望收益的现值 p (1– p )

  12. 最初例子的修正 Su = 22 ƒu = 1 p • 由于 p是风险中性概率,所以 20e0.12 ´0.25 = 22p + 18(1 – p ); p = 0.6523 • 或者,我们可以利用公式 S ƒ Sd = 18 ƒd = 0 (1– p )

  13. Su = 22 ƒu = 1 0.6523 S ƒ Sd = 18 ƒd = 0 0.3477 期权的估值 期权的价值为 e–0.12×0.25 [0.6523´1 + 0.3477´0] = 0.633

  14. 24.2 22 19.8 20 18 16.2 两步二叉树模型 • 每步长为3个月

  15. 欧式看涨期权的估值 24.2 3.2 D • 在节点 B的价值 = e–0.12´0.25(0.6523´3.2 + 0.3477´0) = 2.0257 • 在节点 A的价值 = e–0.12´0.25(0.6523´2.0257 + 0.3477´0) = 1.2823 22 B 19.8 0.0 20 1.2823 2.0257 A E 18 C 0.0 16.2 0.0 F

  16. 72 0 D 60 B 48 4 50 4.1923 1.4147 A E 40 C 9.4636 32 20 F 一个看跌期权的例子:X=52

  17. 72 0 D 60 B 48 4 50 5.0894 1.4147 A E 40 C 12.0 32 20 F 美式期权该如何估值?

More Related