1 / 41

The moral responsibility of scientists.

The moral responsibility of scientists. The implications of scientific discovery: choose one from: nuclear power – how it generates electricity and its role as a weapon of war; biological weapons; genetic engineering. What Are the Advantages and Disadvantages of Nuclear Energy?.

nitara
Download Presentation

The moral responsibility of scientists.

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. The moral responsibility of scientists. • The implications of scientific discovery: choose one from: • nuclear power – how it generates electricity and its role as a weapon of war; • biological weapons; • genetic engineering.

  2. What Are the Advantages and Disadvantages of Nuclear Energy? Nuclear power has a low environmental impact and a very low accident risk, but • high costs, • a low net energy yield, • long-lived radioactive wastes, • vulnerability to sabotage, and • the potential for spreading nuclear weapons technology have limited its use.

  3. How Does a Nuclear Fission Reactor Work? (2) Water is the usual coolant Containment shell around the core for protection Water-filled pools or dry casks for storage of radioactive spent fuel rod assemblies

  4. Light water reactors • 85% of world’s nuclear generated electricity (100% in US) • High inefficient in terms of energy conversion (up to 83% lost as waste heat)

  5. Nuclear fuel • Made from uranium ore • Enriched to 3% of radioactive isotope U-235 • Made into pellets, size of pencil, energy equivalent to 1 ton of coal • Pellets are packed into large pipes-fuel rods • Rods are grouped together into fuel assemblies, these assemblies are placed into reactor core

  6. What happens if there is no water?

  7. How nuclear reactors generate electricity • Superheated water turns into steam • Steam passed through turbine • Physical motion of the turbine is converted into electrical energy

  8. Steam from Nuclear power plants • Superheated water after used in the turbines goes into a condenser • Condenser requires cold water source which is why most plants are located next to water • Pipes with the hot water are circulated through a container filled with cold water , heat is exchanged • Hot water is either discharged into river, ocean… or vented into the atmosphere as steam

  9. Small amounts of radioactive gases Control rods Containment shell Heat exchanger Waste heat Generator Turbine Steam Uranium fuel input (reactor core) Hot coolant Useful electrical energy 25%–30% Hot water output Pump Pump Shielding Waste heat Pump Coolant Pump Cool water input Moderator Pressure vessel Coolant passage Water Condenser Water source (river, lake, ocean) Periodic removal and storage of radioactive wastes and spent fuel assemblies Periodic removal and storage of radioactive liquid wastes Fig. 15-17, p. 387

  10. Reactor in Japan

  11. After 3 or 4 Years in a Reactor, Spent Fuel Rods Are Removed and Stored in Water

  12. Spent Fuel rods • After about 3-4 years of use, the Fuel rods become spent-level of fission drops beneath a certain level • Rods are taken out of reactor stored nearby in water filled pools or dry casks • Stored until they cool down enough to be shipped for permanent storage or to be recycled • These storage facilities are next to the reactor plants, vulnerable to terrorist attack or accidents

  13. Spent fuel reprocessing The spent fuel rods are sent to a facility which separates plutonium from spent fuel for further use as a new generation of fuel or as material used to make atomic weapons. • First the fuel is chopped up, by remote control, behind heavy lead shielding. • These chopped-up pieces are then dissolved in boiling nitric acid, releasing radioactive gases in the process. • The plutonium is separated from the acid solution by chemical means, leaving large quantities of high-level radioactive liquid waste and sludge behind. • After it has cooled down for several years, this liquid waste will have to be solidified for ultimate disposal, while the separated plutonium is fabricated into nuclear fuel or nuclear weapons.

  14. Japan and the Soviet Nuclear program connection As a result of a successful program between the Soviet Union and USA, many nuclear weapons have been destroyed. The fuel from a number of Soviet weapons was sold to Japan to be used for fuel in their reactors So plutonium is used in at least one of the damaged reactors in Japan

  15. What Is the Nuclear Fuel Cycle? • Mine the uranium • Process the uranium to make the fuel • Use it in the reactor • Safely store the radioactive waste • Decommission the reactor

  16. Decommissioning of reactor Fuel assemblies Reactor Enrichment of UF6 Fuel fabrication (conversion of enriched UF6 to UO to UO2 and fabrication of fuel assemblies) Temporary storage of spent fuel assemblies underwater or in dry casks Conversion of U3O8 to UF6 Uranium-235 as UF6 Plutonium-239 as PuO2 Spent fuel reprocessing Low-level radiation with long half-life Geologic disposal of moderate- and high-level radioactive wastes Open fuel cycle today Recycling of nuclear fuel Fig. 15-19, p. 389

  17. What Happened to Nuclear Power? • Slowest-growing energy source and expected to decline more • Why? • Economics • Poor management • Low net yield of energy of the nuclear fuel cycle • Safety concerns • Need for greater government subsidies • Concerns of transporting uranium

  18. Case Study: Worst Commercial Nuclear Power Plant Accident in the U.S. • Three Mile Island • March 29, 1979 • Near Harrisburg, PA, U.S. • Nuclear reactor lost its coolant • Led to a partial uncovering and melting of the radioactive core • Unknown amounts of radioactivity escaped • People fled the area • Increased public concerns for safety • Led to improved safety regulations in the U.S.

  19. Case Study: Worst Nuclear Power Plant Accident in the World • Chernobyl • April 26, 1986 • In Chernobyl, Ukraine • Series of explosions caused the roof of a reactor building to blow off • Partial meltdown and fire for 10 days • Huge radioactive cloud spread over many countries and eventually the world • 350,000 people left their homes • Effects on human health, water supply, and agriculture

  20. Oak Ridge Reactor

  21. Remains of a Nuclear Reactor at the Chernobyl Nuclear Power Plant

  22. Human casualties of Chernobyl 56 people lost their lives as a direct result of radiation poisoning or fire Thyroid cancer From drinking Milk killed 10-12 thousand

  23. Nuclear Power Has Advantages and Disadvantages • Advantages • Disadvantages

  24. TRADE-OFFS Conventional Nuclear Fuel Cycle Advantages Disadvantages Large fuel supply Cannot compete economically without huge government subsidies Low environmental impact (without accidents) Low net energy yield High environmental impact (with major accidents) Emits 1/6 as much CO2 as coal Environmental costs not included in market price Moderate land disruption and water pollution (without accidents) Risk of catastrophic accidents Moderate land use No widely acceptable solution for long-term storage of radioactive wastes Low risk of accidents because of multiple safety systems (except for Chernobyl-type reactors) Subject to terrorist attacks Spreads knowledge and technology for building nuclear weapons Fig. 15-21, p. 391

  25. TRADE-OFFS Coal vs. Nuclear Coal Nuclear Ample supply Ample supply of uranium High net energy yield Low net energy yield Very high air pollution Low air pollution Low CO2 emissions High CO2 emissions Much lower land disruption from surface mining High land disruption from surface mining Moderate land use High land use Low cost (with huge subsidies) High cost (even with huge subsidies) Fig. 15-22, p. 392

  26. Nuclear Power Plants Are Vulnerable to Terrorists Acts • Explosions or meltdowns possible at the power plants • Storage pools and casks are more vulnerable to attack • 60 countries have or have the ability to build nuclear weapons

  27. Dealing with Radioactive Wastes Produced by Nuclear Power Is a Difficult Problem • High-level radioactive wastes • Must be stored safely for 10,000–240,000 years • Where to store it • Deep burial: safest and cheapest option • Transportation concerns • Would any method of burial last long enough? • There is still no facility: NIMBY scenario • Can the harmful isotopes be changed into harmless isotopes? (working on it, $$$)

  28. Case Study: Experts Disagree about What to Do with Radioactive Wastes in the U.S. • 1985: plans in the U.S. to build a repository for high-level radioactive wastes in the Yucca Mountain desert region (Nevada) • Problems • Cost: $58–100 billion • Large number of shipments to the site: protection from attack? • Rock fractures • Earthquake zone • Decrease national security

  29. What Do We Do with Worn-Out Nuclear Power Plants? • Decommission or retire the power plant • At least ½ of US plants are scheduled to close by next year • Some options • Dismantle the plant and safely store the radioactive materials • Enclose the plant behind a physical barrier with full-time security until a storage facility has been built • Enclose the plant in a tomb • Monitor this for thousands of years

  30. Can Nuclear Power Lessen Dependence on Imported Oil, Reduce Global Warming? • Nuclear power plants: no CO2 emission • Complete Nuclear fuel cycle: emits CO2 (not like Fossil fuels) • Opposing views on nuclear power and global warming • Nuclear power advocates • 2003 study by MIT researchers: low grade ore • 2007: Oxford Research Group: reactor a week for 70 years still only produce 20%

  31. Will Nuclear Fusion Save Us? • “Nuclear fusion is the power of the future and always will be” • Still in the laboratory phase after 50 years of research and $34 billion dollars: energy • 2006: U.S., China, Russia, Japan, South Korea, and European Union • Will build a large-scale experimental nuclear fusion reactor by 2040

  32. Experts Disagree about the Future of Nuclear Power • Proponents of nuclear power • Fund more research and development • Pilot-plant testing of potentially cheaper and safer reactors • Test breeder fission and nuclear fusion • Opponents of nuclear power • Fund rapid development of energy efficient and renewable energy resources

  33. Science Focus: Are New and Safer Nuclear Reactors the Answer? • Advanced light-water reactors (ALWR) • Built-in passive safety features • High-temperature-gas-cooled reactors (HTGC) Avoids problems with present water based systems, but still not 100% reliable

  34. Alternatives • Pebble bed modular reactor (PBMR) • Pros: no need to shut down for refueling • Cons: graphite protective coatings, vulnerable • China, South Africa • Breeder nuclear fission reactors • Creates plutonium from uranium • France built one then shut it down 2 years later

  35. Pebble Bed Reactors

  36. Breeder reactors

  37. Science Focus: Rules?New and Safer Nuclear Reactors • New Generation nuclear reactors must satisfy these five criteria • Safe-runaway chain reaction is impossible • Fuel can not be used for nuclear weapons • Easily disposed of fuel • Nuclear fuel cycle must generate a higher net energy yield than other alternative fuels, without huge government subsidies • Emit fewer greenhouse gases than other fuels

  38. Exit questions for Week 6 • Describe the nuclear fuel cycle • At the moment, how do we deal with the highly reactive radioactive wastes produced by nuclear power plants? • How should we deal with these wastes in the future? • Summarize arguments for and against nuclear power

More Related