1 / 34

Molecular Detection of Inherited Diseases

Molecular Detection of Inherited Diseases. Chapter 13. Models of Disease Etiology. Genetic (inherited) Environmental (somatic) Multifactorial (polygenic + somatic). Family History of Phenotype is Illustrated on a Pedigree Diagram. Pedigree Diagrams Reveal Transmission Patterns.

noah
Download Presentation

Molecular Detection of Inherited Diseases

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Molecular Diagnostics Molecular Detection of Inherited Diseases Chapter 13

  2. Molecular Diagnostics Models of Disease Etiology • Genetic (inherited) • Environmental (somatic) • Multifactorial (polygenic + somatic)

  3. Molecular Diagnostics Family History of Phenotype is Illustrated on a Pedigree Diagram

  4. Molecular Diagnostics Pedigree Diagrams Reveal Transmission Patterns

  5. Molecular Diagnostics Pedigree Diagrams Reveal Transmission Patterns

  6. Molecular Diagnostics Pedigree Diagrams Reveal Transmission Patterns

  7. Molecular Diagnostics Transmission Patterns • AR, AD, or sex-linked patterns are observed in single-gene disorders (diseases caused by one genetic mutation). • Prediction of a transmission pattern assumes Mendelian inheritance of the mutant allele.

  8. Molecular Diagnostics + + + Normal phenotype + + + + + + Abnormal phenotype - + - Transmission Patterns • Gain of function mutations usually display a dominant phenotype. • Loss of function mutations usually display a recessive phenotype. • Dominant negative patterns are observed with loss of function in multimeric proteins. Homozygous (+/+) Heterozygous (+/-)

  9. Molecular Diagnostics Autosomal Recessive (AR) Transmission • AR is the most frequently observed transmission pattern. • The mutant phenotype is not observed in the heterozygous (normal/mutant) state. • A mutation must be homozygous (mutant/mutant) to show the abnormal phenotype. • AR mutations also result in an abnormal phenotype in a hemizygous (mutant/deletion) state. • Loss of the normal allele, revealing the mutant allele, is called loss of heterozygosity, or LOH. • LOH results from somatic (environmental, not inherited) mutations or deletions of the normal allele.

  10. Molecular Diagnostics

  11. Molecular Diagnostics Examples of Molecular Detection of Single Gene Disorders • Hemachromatosis I: overabsorption of iron from food caused by mutations in the gene for a membrane iron transporter (hemachromatosis type I gene: HFE). • Thrombophilic state caused by the Leiden mutation in the gene for coagulation factor V (F5) and/or specific mutations in the gene for coagulation factor II (F2).

  12. Molecular Diagnostics Hemachromatosis Type I

  13. Molecular Diagnostics HFE C282Y Detection by PCR-RFLP PCR primer Exon 4 PCR primer Mutation creates an Rsa1 site G->A Rsa1 sites (Mut) (+) MW +/+ +/+ m/m +/m +/+ +/+ 240 bp 140 bp 110 bp 30 bp Agarose gel

  14. Molecular Diagnostics Detection of Factor V Leiden (R506Q) Mutation by PCR-RFLP PCR primer Exon 10 PCR primer MnlI sites (+) (Mut) +/+ +/m m/m MW G->A 153 bp 116 bp Mutation destroys an MnlI site 67 bp 37 bp Agarose gel

  15. Molecular Diagnostics Detection of Factor V Leiden (R506Q) Mutation by SSP-PCR PCR primer Exon 10 Sequence-specific PCR primers Longer primer ends on mutated base A and makes a larger amplicon G->A 148 bp (Mut) (+) 123 bp Agaros gel

  16. Molecular Diagnostics Q F A Factor V Leiden (R506Q) Mutation Detection by INVADERTM Assay Flap Mut probe Flap A wt probe A T Mutation present -> Cleavage C Normal sample (no cleavage) A Complex formation F Fluorescence in plate well indicates presence of mutation Cleavage

  17. Molecular Diagnostics Few Diseases Have Simple Transmission Patterns Due To: • Variable expressivity: range of phenotypes from the same genetic mutation • Genetic heterogeneity: different mutations cause the same phenotype • Often observed in diseases with multiple genetic components • Incomplete penetrance: presence of mutation but no abnormal phenotype

  18. Molecular Diagnostics Non-Mendelian Transmission Patterns • Single-gene disorders or disorders with multiple genetic components with nonclassical patterns of transmission: • Gonadal mosaicism: somatic mutation in germ-line cells (gonads) • Genomic imprinting: nucleotide or histone modifications that do not change the DNA sequence • Nucleotide repeat expansion: increased allele sizes disrupt gene function • Mitochondrial inheritance: maternal inheritance of mitochondrial genes

  19. Molecular Diagnostics Non-Mendelian Transmission Patterns Gonadal mosaicism Nucleotide repeat expansion Mitochondrial inheritance

  20. Molecular Diagnostics Nucleotide Repeat Expansion in Fragile X Mental Retardation Gene (FMR1)

  21. Molecular Diagnostics Detection of Fragile X CGG Expansion Mutations by PCR and Southern Blot Southern blot Full mutation PCR 50–90 (premutation) Inactive X in females cleaved by methylation- specific restriction enzyme 20–40 (normal) Due to their large size, Southern blot is required to detect full mutations. Premutations can be detected by PCR.

  22. Molecular Diagnostics Huntingtin Detection of Huntingtin Gene CAG Expansion Mutations by PCR Labeled PCR primer 80–170 bp 40 repeats Huntington Disease > 10–29 repeats (normal) Autoradiogram of polyacrylamide gel

  23. Molecular Diagnostics Human Disorders Due to Mitochondrial Mutations • Kearnes Sayre syndrome (KSS) • Pigmentary retinopathy, chronic progressive external ophthalmoplegia (CPEO) • Leber hereditary optic neuropathy (LHON) • Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) • Myoclonic epilepsy with ragged red fibers (MERRF) • Deafness • Neuropathy, ataxia, retinitis pigmentosa (NARP) • Subacute necrotizing encephalomyelopathy with neurogenic muscle weakness, ataxia, retinitis pigmentosa (Leigh with NARP)

  24. Molecular Diagnostics HV 2 P H1 LHON P 14484T>C MELAS H2 P L 3243A>G HV 1 LHON Areas deleted in KSS 3460G>A LHON 11778G>A MERRF 8344A>G NARP 8393T>G Mitochondrial Mutations Associated with Disease

  25. Molecular Diagnostics Mitochondrial Mutations • Homoplasmy: all mitochondria in a cell are the same • Heteroplasmy: some mitochrondria are normal and others have mutations • The severity of the disease phenotype depends on the amount of mutant and normal mitochondria present

  26. Molecular Diagnostics Detection of NARP Mitochondrial Point Mutation (ATPase VI 8993 T→C or G) by PCR-RFLP The presence of the mutation creates an MspI restriction enzyme site in the amplicon. U = Uuncut, no MspI C = Cut, with MspI MspI U C U C U C 551 bp 345 bp Mutation present 206 bp Agarose gel

  27. Molecular Diagnostics Detection of KSS Mitochondrial Deletion Mutation by Southern Blot M M + + PvuII U C U C The restriction enzyme, PvuII cuts once in the circular mitochondrial DNA. M = Mutant + = Normal U = Uncut, No PvuII C = Cut with PvuII 16.6 kb (normal) Deletion mutant (Heteroplasmy) Autoradiogram

  28. Molecular Diagnostics Genomic Imprinting • Gene silencing due to methylation of C residues and other modifications. • Genomic imprinting occurs during production of egg and sperm. • The phenotypic effects of imprinting are revealed in diseases in which the maternal or paternal allele is lost (uniparental disomy/deletion).

  29. Molecular Diagnostics Example of Diseases Affected by Genomic Imprinting • Prader-Willi Syndrome: caused by regional deletion or mutation in the paternally inherited chromosome 15 • Angelman Syndrome: a different disease phenotype caused by regional deletion or mutation in the maternally inherited chromosome 15

  30. Molecular Diagnostics DNA Methylation Detected by Methylation Specific PCR (MSP-PCR) …GTCMeGATCMeGATCMeGTG… …GTCGATCGATCGTG… Bisulfite treatment converts unmethylated C residues to U. PCR …GTCMeGATCMeGATCMeGTG… …GTUGATUGATUGTG… G CTAG CTAG CAC CTAGCTAGCACG G PCR primer PCR primer Product No product

  31. Molecular Diagnostics Other Methods for Detection of DNA Methylation • Methylation-sensitive single-nucleotide primer extension • PCR-RFLP with methylation sensitive restriction enzymes • Southern blot with methylation-sensitive restriction enzymes

  32. Molecular Diagnostics Genetic Testing Limitations • Intergenic mutations in splice sites or regulatory regions may be missed by analysis of gene coding regions. • Therapeutic targets (except for gene therapy) are phenotypic. • Nonsymptomatic diagnosis where disease phenotype is not (yet) expressed may raise ethical concerns. • Most disease and normal traits are multicomponent systems.

  33. Molecular Diagnostics Multifactorial Inheritance(Complex Traits) • Complex traits have no distinct inheritance pattern. • Complex traits include normal traits affected by multiple loci and/or environmental factors (height, blood pressure). • Quantitative traits are complex traits with phenotypes defined by thresholds. • Obesity, BMI 27 kg/m • Diabetes, fasting glucose 126 mg

  34. Molecular Diagnostics Genetic Testing Complexities • Variable expressivity: a single genetic mutation results in a range of phenotypes • Genetic heterogeneity: the same phenotype results from mutations in different genes (includes diseases with multiple genetic components) • Penetrance: presence of mutation without the predicted phenotype

More Related